[1] A. Shamir, “How to Share a Secret,” Communications of the ACM, vol. 22, no. 11, pp. 612-613, 1979.##
[2] G. Blakley, “Safeguarding Cryptographic Keys,” In Proc. AFIPS 1979 National Computer Conf., pp. 313–317, June 1979.##
[3] Z. Eslami, S. Kabiri Rad, “A New Verifiable Multi-Secret Sharing Scheme Based on Bilinear Maps,” Wirel. Pers. Commun., 63, pp. 459–467, 2012.##
[4] Ch. Hsu, Q. Cheng, X. Tang, et al, “An Ideal Multi-Secret Sharing Scheme Based on MSP,” Inf. Sci., 181, pp. 1403–1409, 2011.##
[5] J. Zhang, F. Zhang, “Information-theoretical Secure Verifiable Secret Sharing with Vector Space Access Structures over Bilinear Groups and its Application,” Future Gener. Comput. Syst. 52, pp. 109–115, 2015.##
[6] M. Ben-Or, Sh. Goldwasser, A. Wigderson, “Completeness Theorems for Non-cryptographic Fault-Tolerant Distributed Computation (Extended Abstract),” STOC, pp. 1–10, 1988.##
[7] D. Chaum, C. Crepeau, I. Damgard, “Multiparty Unconditionally Secure Protocols (Extended Abstract),” STOC, pp. 11–19, 1988.##
[8] B Chor, Sh. Goldwasser, S Micali, B. Awerbuch, “Verifiable Secret Sharing and Achieving Simultaneity in the Presence of Faults (Extended Abstract),” FOCS, pp. 383–395, 1985.##
[9] C. Ma, X. Ding, “Proactive Verifiable Linear Integer Secret Sharing Scheme,” Information and Communications Security, (LNCS, 5927), pp. 439–448, 2009.##
[10] S. Mashhadi, M. Hadian, “Two Verifiable Multi Secret Sharing Schemes Based on Nonhomogeneous Linear Recursion and LFSR Public-Key Cryptosystem,” Inf. Sci., 294, pp. 31–40, 2015.##
[11] T. S. Wu, Y. M. Tseng, “Publicly Verifiable Multi-Secret Sharing Scheme from Bilinear Pairings,” IET Inf. Sec., 7, pp. 239–246, 2013.##
[12] C. Lin, L. Harn, “Unconditionally Secure Verifiable Secret Sharing Scheme,” AISS: Adv. Inf. Sci. Serv. Sci., 4, pp. 514–518, 2012.##
[13] D. R. Stinson, R. Wei “Unconditionally Secure Proactive Secret Sharing Scheme with Combinatorial Structures, Selected Areas in Cryptography,” Selected Areas in Cryptography: SAC'99, (LNCS, 1758), pp. 200–214, 2000.##
[14] M. Fatemi, R. Ghasemi, T. Eghlidos, M. R. Aref, “Efficient Multistage Secret Sharing Scheme Using Bilinear Map,” IET Inf. Sec., 8, pp. 224–229, 2014.##
[15] J. Herranz, A. Ruiz, G. Sáez, “Sharing Many Secrets with Computational Provable Security,” Inf. Proc. Lett., 113, pp. 572–579, 2013.##
[16] S. Mashhadi, “How to Fairly Share Multiple Secrets Stage by Stage” , Wirel. Pers. Commun., 90, pp. 93–107, 2016.##
[17] L. J. Pang, Y. M. Wang, “A New (t, n) Multi-Secret Sharing Scheme Based on Shamir’s Secret Sharing,” Applied Mathematics and Computation, vol. 167, pp. 840-848, 2005.##
[18] T. Y. Chang, M. S. Hwang, W. P. Yang, “A New Multi-Stage Secret Sharing Scheme Using One-Way Function,” ACM SIGOPS Oper. Syst., 39, pp. 48–55, 2005.##
[19] J. He, E. Dawson, “Multistage Secret Sharing Based on One-Way Function,” Electron. Lett., vol. 30, pp. 1591–1592, 1994.##
[20] H. X. Li, C. T. Cheng, L. J. Pang, “An Improved Multi-Stage (t, n)-Threshold Secret Sharing Scheme,” WAIM, (LNCS, 3739), pp. 267–274, 2005.##
[21] P. W. Shor, “Algorithms for Quantum Computation: Discrete Logarithms and Factoring,” Proc. of the 35th Annual Symposium on Foundations of Computer Science, Washington, DC, USA: IEEE Computer Society, pp. 124-134, 1994.##
[22] R. J. McEliece, “A Public-Key Cryptosystem Based on Algebraic Coding Theory,” DSN Progress Report, vol. 42, no. 44, pp. 114-116, 1978.##
[23] D. Bernstein, J. Buchmann, E. Dahmen, “Post-Quantum Cryptography,” Springer, 2009.##
[24] M. Ajtai, “Generating Hard Instances Of Lattice Problems (Extended Abstract),” Proc. of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, New York, NY, USA: ACM, pp. 99-108, 1996.##
[25] O. Goldreich, S. Goldwasser, S. Halevi, “Public-key Cryptosystems from LatTice Reduction Problems,” Advances in Cryptology CRYPTO 97, ser. Lecture Notes in Computer Science, J. Kaliski, BurtonS., Ed. Springer Berlin Heidelberg, vol. 1294, pp. 112-131, 1997.##
[26] Georgescu, “A Lwe-Based Secret Sharing Scheme,” IJCA Special Issue on Network Security and Cryptography, no. 3, pp. 27-29, December, published by Foundation of Computer Science, New York, USA, 2011.
[27] R. El Bansarkhani, M. Meziani, “An Efficient Lattice-Based Secret Sharing Construction,” Information Security Theory and Practice. Security, Privacy and Trust in Computing Systems and Ambient Intelligent Ecosystems, ser. Lecture Notes in Computer Science, I. Askoxylakis, H. Phls, and J. Posegga, Eds. Springer Berlin Heidelberg, vol. 7322, pp. 160-168, 2012.##
[28] J. Shao, Z. F. Cao, “A New Efficient (t, n) Verifiable Multi-Secret Sharing (VMSS) Based on YCH Scheme,” Applied Mathematics and Computation, 168, pp. 135–140, 2005.##
[29] M. Tadayon, H. Khanmohammadi, M. Haghighi, “Dynamic and Verifiable Multi-Secret Sharing Scheme Based on Hermite Interpolation and Bilinear Maps,” IET Inf. Sec., 9, pp. 234–239, 2015.##
[30] Ch. Hsu, L. Harn, G. Cui, “An Ideal Multi-Secret Sharing Scheme Based on Connectivity of Graphs,” Wireless Personal Communication, 77, pp. 383-394, 2014##.
[31] Ch. Hsu, G. Cui, Q. Cheng, J. Chen, “A Novel Linear Multi-Secret Sharing Scheme for Group Communication in Wireless Mesh Networks,” Network and Computer Applications, 34, pp. 464-468, 2011.##
[32] M. Liu, L. Xiao, Z. Zhang, “Linear Multi-Secret Sharing Schemes Based on Multi-Party Computation,” Finite Fields and Their Applications, vol. 12, pp. 704-13, 2006.##
[33] S. Mashhadi, M. Hadian Dehkordi, N. Kiamari, “Provably Secure Verifiable Multi-Stage Secret Sharing Scheme Based on Monotone Span Program,” IET Information Security, vol. 11, pp.326-331, 2017.##
[34] S. Mashhadi, “Computationally-Secure Multiple Secret Sharing: Models, Schemes, and Formal Security Analysis,” The ISC Int. J. Inf. Sec., vol. 7, pp. 1–10, 2015.##
[35] M. Karchmer, A. Wigderson, “On Span Programs,” In Proceedings of the Eighth Annual Conf. On Structure in Complexity, San Diego, CA, pp. 102-111, May 1993.##
[36] D. Micciancio, S. Goldwasser, “Complexity of Lattice Problems: A Cryptographic Perspective,” Ser. Milken Institute Series on Financial Innovation and Economic Growth. Springer US, 2002. [Online]. Available: http://books.google.com/books?id=N4lHlGwy1AUC##
[37] O. Regev, “On Lattices, Learning with Errors, Random Linear Codes, and Cryptography,” J. ACM, 56(6):34:134:40, September 2009.##
[38] J. Hoffstein, J. Pipher, J. Silverman, Ntru “A Ring-Based Public Key CrypTosystem,” Algorithmic Number Theory, Ser. Lecture Notes in Computer Science, 1423, pp.267-288, 1998.##
[39] M.H. Dehkordi, R. Ghasemi, “A Lightweight Public Verifiable Multi Secret Sharing Scheme Using Short Integer Solution,” In Wireless Personal Communi- Cations, Springer, pp. 1459–1469, 2016.##
[40] H. Pilaram, T. Eghlidos “An Efficient Lattice Based Multi-stage IEEE Transactions on Dependable and Secure Computing, vol. 14, no. 1, pp.2-8, 2015.##
[41] B. Rajabi, Z. Eslami, “A Verifiable Threshold Secret Sharing Scheme Based on Lattices,” Information Sciences, Vol. 501 pp.655–661, 2019.##