مقابله با فریب در گیرنده GPS با استفاده از همبستگی و روش حداقل میانگین مربعات بر مبنای الگوریتم Sign-Data

نویسندگان

1 کارشناسی ارشد، دانشکده مهندسی برق، دانشگاه علم و صنعت ایران، تهران، ایران

2 استاد، دانشکده مهندسی برق، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

در میان انواع تداخل سیگنال ماهواره‌‌های سامانه موقعیت‌یاب جهانی GPS، فریب به‌عنوان خطرناک‌ترین دخالت عمدی درنظر گرفته‌ شده است. با حضور فریب در سیگنال دریافتی GPS اطلاعات نادرست به گیرنده می‌رسد که مشکلاتی در محاسبات زمانی و مکانی گیرنده ایجاد می‌کند. مقابله با فریب در دو بخش آشکارسازی و کاهش فریب انجام می‌پذیرد. در این مقاله به‌منظور آشکارسازی سیگنال فریب از ویژگی‌های تابع همبستگی بهره گرفته‌ایم. در فرآیند کاهش فریب، روش فیلتر وفقی LMS بر مبنای الگوریتم Sign-Data مورد استفاده قرار می‌گیرد. این روش اثر تداخل فریب را در سیگنال دریافتی GPS کاهش می‌دهد و در برابر تداخلی از نوع فریب تأخیری دفاع می‌کند. روش پیشنهادی بر روی داده‌های واقعی و در مرحله اکتساب از فرآیند پردازش گیرنده GPS اعمال می‌گردد. نتایج نشان می‌دهند که روش وفقی مبتنی بر الگوریتم Sign-Data به‌طور متوسط اثربخشی فریب را 89 درصد محدود می‌کند. علاوه‌بر کاهش فریب، پارامتر PDOP نیز که نمایانگر موقعیت فضایی ماهواره‌های شناسایی‌شده است، در همه نتایج بهبود یافته است. به‌طور میانگین مقدار PDOP از 47 به 66/2 کاهش یافته است.

کلیدواژه‌ها


عنوان مقاله [English]

Defense Against Spoofing in GPS Receiver using Correlation and Least Mean Squares Method Based on Sign-Data Algorithm

نویسندگان [English]

  • Zahra Shokhmzan 1
  • Seyed Mohammad Reza Mousavi 2
1 Master's degree, Faculty of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
2 Professor, Faculty of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

Among the variety of GPS signal interference, spoofing is considered as the most dangerous intentional
interference. If spoofing signal would have existed in the received signal GPS, wrong information reaches
the receiver which causes problems in time and location computation of the receiver. Defense against
spoofing includes the spoofing detection and reduction. In this paper, we use the properties of correlation
function for spoofing detection. In order to mitigate spoofing, we apply the method of Least Mean Squares
(LMS) based on sign-data algorithm. This approach reduces effect of the spoofing interference in the
received signal GPS and defends against interference of kind of delay spoofing. The proposed approach
have been implemented on real dataset and in the acquisition stage from GPS receiver processing. The
results show that the adaptive method based on sign-data algorithm decrease effectiveness of spoofing on
average 89 percent. In addition to spoofing reduction, the Position Dilution of Precision (PDOP)
parameter improves at all of results. PDOP parameter indicates the spatial position of identified satellites.
The PDOP value mitigated from 47 to 2.66 on average.

کلیدواژه‌ها [English]

  • GPS Spoofing
  • Detection
  • Mitigation
  • Correlation
  • LMS and Sign-Data Algorithm
[1] F. Shafiee and M. R. Mosavi, “Narrow band
Interference Suppression for GPS Navigation using
Neural Networks,” Journal of GPS Solutions, pp.
1-11, 2015.
[2] H. Azami, M. R. Mosavi, and S. Sanei,
“Classification of GPS Satellites using Improved
Back Propagation Training Algorithms,”
International Journal of Wireless Personal
Communications, vol. 71, no. 2, pp. 789-803, 2013.
[3] A. Jovanovic, C. Botteron, and P. A. Farine,
“Multi-Test Detection and Protection Algorithm
against Spoofing Attacks on GNSS Receivers,”
IEEE Pos., Loc. and Nav. Symp. (PLANS), pp.
1258-1271, 2014.
[4] K. Wesson, M. Rothlisberger, and T. Humphreys,
“Practical Cryptographic Civil GPS Signal
Authentication,” Journal of the Institute of
Navigation (JIN), vol. 59, no. 3, pp. 177-193, 2012.
[5] M. R. Azarbad and M. R. Mosavi, “A New Method
to Mitigate Multipath Error in Single-Frequency
GPS Receiver with Wavelet Transform,” Journal of
GPS Solutions, vol. 18, no. 2, pp. 189-198, 2014.
[6] M. R. Mosavi, “Comparing DGPS Corrections
Prediction using Neural Network, Fuzzy Neural
Network and Kalman Filter,” Journal of GPS
Solutions, vol. 10, no. 2, pp. 97-107, 2006.
[7] A. Jafarnia-Jahromi, A. Broumandan, J. Nielsen,
and G. Lachapelle, “GPS Spoofer Countermeasure
Effectiveness Based on Signal Strength, Noise
Power and C/No Observables,” International Journal
of Satellite Communications and Networking, vol.
30, no. 4, pp. 181-191, 2012.
[8] T. Humphreys, “Detection Strategy for
Cryptographic GNSS Anti-Spoofing,” IEEE
Transactions on Aerospace and Electronic Systems,
vol. 49, pp. 1073-1090, 2013.
[9] A. R. Baziar, M. Moazedi, and M. R. Mosavi,
“Analysis of Single Frequency GPS Receiver under
Delay and Combinig Spoofing Algorithm,” Journal
of Wireless Personal Communications, vol. 83, no.
3, pp. 1955-1970, 2015.
[10] C. Bonebrake and L. R. O'Neil, “Attacks on GPS
Time Reliability,” IEEE Transactions on Security &
Privacy, vol. 12, no. 3, pp. 82-85, 2014.
[11] A. J. Jahromi, A. Broumandan, J. Nielsen, and G.
Lachapelle, “GPS Vulnerability to Spoofing Threats
and a Review of Antispoofing Techniques,”
International Journal of Navigation and Observation
(IJNO), pp. 1-16, 2012.
[12] A. M. Mitelman, “Signal Quality Monitoring for
GPS Augmentation Systems,” Ph.D. Thesis,
Department of Electrical Engineering, Stanford
University, California, 2004.
[13] A. Cavaleri, M. Pini, L. Lo Presti, and M. Fantino,
“Signal Quality Monitoring Applied to Spoofing
Detection,” the 24th International Technical
Meeting of The Satellite Division of the Institute of
Navigation (ION GNSS), pp. 1-9, 2011.
[14] D. P. Shepard and T. E. Humphreys,
“Characterization of Receiver Response to Spoofing
Attacks,” GPS World, vol. 21, no. 9, pp. 27-33,
2010.
[15] J. Nielsen, V. Dehghanian, and G. Lachapelle,
“Effectiveness of GNSS Spoofing Countermeasure
based on Receiver CNR Measurements,”
International Journal of Navigation and Observation
(IJNO), pp. 1-9, 2012.
[16] A. R. Bazyar, M. Moazedi, M. R. Mosavi, and S. Z.
Ghaffari, “A Novel Technique for GPS Spoofing
Detection based on Pseudo-range Measurements in
order to Protection of Marine Navigation Systems,”
Iranian Journal of Marine Technologies, vol. 1,
no.2, pp. 1-13, 2013. (in Persian)
[17] L. Scott, “Anti-Spoofing and Authenticated Signal
Architectures for Civil Navigation Systems,” 16th
International Technical Meeting of the Satellite
Division of The Institute of Navigation (ION
GPS/GNSS), 2003.
[18] A. J. Jahromi, T. Lin, A. Broumandan, J. Nielsen,
and G. Lachapelle, “Detection and Mitigation of
Spoofing Attacks on a Vector-Based Tracking GPS
Receiver,” International Technical Meeting of the
Institute of Navigation (ION GNSS), pp. 3-8, 2012.
[19] S. Daneshmand, A. Jafarnia-Jahromi, A.
Broumandan, and G. Lachapelle, “A Low
Complexity GNSS Spoofing Mitigation Technique
using a Double Antenna Array,” GPS World
Magazine, vol. 22, no. 12, pp. 44-46, 2011.
[20] L. Ge, Sh. Han, and Ch. Rizos, “Multipath
Mitigation of Continuous GPS Measurements using
an Adaptive Filter,” Journal of GPS Solutions, vol.
4, no. 2, pp. 19-30, 2000.
[21] B. Farhang Boroujeny, “Adaptive Filters Theory
and Applications,” University of Utah USA, 2013.
[22] M. R. Mosavi, M. J. Rezaei, N. Hosseinzadeh, and
R. A. Kiaamiri, “New Intellogent Methods for
Detection and Mitigation of Spoofing Signal in GPS
Receivers,” Journal of Electronics and Cyber
Defense, vol. 2, no. 1, pp. 71-81, 2014. (in Persian)
[23] M. R. Mosavi, A. Bazyar, and M. Moazedi, “A New
Wavelet based Method for Reduction of Spoofing
Effect on Single-Frequency GPS Receivers,”
Journal of Soft Computing and Information
Technology, vol. 3, no. 3, pp. 59-68, 2014. (in
Persian)