[1] Y. Liu, H.-H. Chen, and L. Wang, "Physical Layer Security for Next Generation Wireless Networks: Theories, Technologies, and Challenges," IEEE Communications Surveys & Tutorials, vol. 19, no. 1, pp. 347-376, 2017, doi: 10.1109/COMST.2016. 2598968.
[2] A. K. Yerrapragada, T. Eisman, and B. Kelley, "Physical Layer Security for Beyond 5G: Ultra Secure Low Latency Communications," IEEE Open Journal of the Communications Society, vol. 2, pp. 2232-2242, 2021, doi: 10.1109/OJCOMS.2021.3105185.
[3] B. Li, Z. Fei, C. Zhou, and Y. Zhang, "Physical-Layer Security in Space Information Networks: A Survey," IEEE Internet of Things Journal, vol. 7, no. 1, pp. 33-52, 2020, doi:10.1109/JIOT.2019.2943900.
[5] A. Babakhani, D. B. Rutledge, and A. Hajimiri, "Near-field direct antenna modulation," IEEE Microwave Magazine, vol. 10, no. 1, pp. 36-46, 2009, doi: 10.1109/MMM.2008.930674.
[6] A. Babakhani, D. B. Rutledge, and A. Hajimiri, "Transmitter Architectures Based on Near-Field Direct Antenna Modulation," IEEE Journal of Solid-State Circuits, vol. 43, no. 12, pp. 2674-2692, 2008, doi: 10.1109/JSSC.2008.2004864.
[7] M. P. Daly and J. T. Bernhard, "Directional Modulation Technique for Phased Arrays," IEEE Transactions on Antennas and Propagation, vol. 57, no. 9, pp. 2633-2640, 2009, doi: 10.1109/TAP.2009.2027047.
[8] M. P. Daly, E. L. Daly, and J. T. Bernhard, "Demonstration of Directional Modulation Using a Phased Array," IEEE Transactions on Antennas and Propagation, vol. 58, no. 5, pp. 1545-1550, 2010, doi: 10.1109/TAP.2010.2044357.
[9] Y. Ding and V. F. Fusco, "A Vector Approach for the Analysis and Synthesis of Directional Modulation Transmitters," IEEE Transactions on Antennas and Propagation, vol. 62, no. 1, pp. 361-370, 2014, doi: 10.1109/TAP.2013.2287001.
[10] Y. Ding and V. F. Fusco, "Directional modulation far-field pattern separation synthesis approach," IET Microwaves, Antennas & Propagation, vol. 9, no. 1, pp. 41-48, 2015, doi: https://doi.org/10.1049/iet-map.2014.0331.
[11] W. Q. Wang and H. C. So, "Transmit Subaperturing for Range and Angle Estimation in Frequency Diverse Array Radar," IEEE Transactions on Signal Processing, vol. 62, no. 8, pp. 2000-2011, 2014, doi: 10.1109/TSP.2014.2305638.
[12] P. Antonik, M. C. Wicks, H. D. Griffiths, and C. J. Baker, "Frequency diverse array radars," in 2006 IEEE Conference on Radar, 24-27 April 2006, p. 3 pp., doi: 10.1109/RADAR.2006.1631800.
[13] T. Eker, S. Demir, and A. Hizal, "Exploitation of Linear Frequency Modulated Continuous Waveform (LFMCW) for Frequency Diverse Arrays," IEEE Transactions on Antennas and Propagation, vol. 61, no. 7, pp. 3546-3553, 2013, doi: 10.1109/TAP.2013.2258393.
[14] Y. Wang, W. Q. Wang, and H. Chen, "Linear Frequency Diverse Array Manifold Geometry and Ambiguity Analysis," IEEE Sensors Journal, vol. 15, no. 2, pp. 984-993, 2015, doi: 10.1109/JSEN.2014.2359074.
[15] W. Q. Wang, "Range-Angle Dependent Transmit Beampattern Synthesis for Linear Frequency Diverse Arrays," IEEE Transactions on Antennas and Propagation, vol. 61, no. 8, pp. 4073-4081, 2013, doi: 10.1109/TAP.2013.2260515.
[16] W. Q. Wang, "Subarray-based frequency diverse array radar for target range-angle estimation," IEEE Transactions on Aerospace and Electronic Systems, vol. 50, no. 4, pp. 3057-3067, 2014, doi: 10.1109/TAES.2014.120804.
[17] P. F. Sammartino, C. J. Baker, and H. D. Griffiths, "Frequency Diverse MIMO Techniques for Radar," IEEE Transactions on Aerospace and Electronic Systems, vol. 49, no. 1, pp. 201-222, 2013, doi: 10.1109/TAES.2013.6404099.
[18] H. Shao, J. Li, H. Chen, and W. Q. Wang, "Adaptive Frequency Offset Selection in Frequency Diverse Array Radar," IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 1405-1408, 2014, doi: 10.1109/LAWP.2014.2340893.
[19] H. Huang and W. Q. Wang, "FDA-OFDM for integrated navigation, sensing, and communication systems," IEEE Aerospace and Electronic Systems Magazine, vol. 33, no. 5-6, pp. 34-42, 2018, doi: 10.1109/MAES.2018.170109.
[20] W.-Q. Wang, "DM using FDA antenna for secure transmission," (in en), IET Microwaves, Antennas & Propagation, vol. 11, no. 3, pp. 336-345, 2016/10/04/ 2016, doi: 10.1049/iet-map.2016.0303.
[21] W. Khan, I. M. Qureshi, and S. Saeed, "Frequency Diverse Array Radar With Logarithmically Increasing Frequency Offset," IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 499-502, 2015, doi: 10.1109/LAWP.2014.2368977.
[22] K. Gao, W.-Q. Wang, J. Cai, and J. Xiong, "Decoupled frequency diverse array range–angle-dependent beampattern synthesis using non-linearly increasing frequency offsets," IET Microwaves, Antennas & Propagation, vol. 10, no. 8, pp. 880-884, 2016, doi: https://doi.org/10.1049/iet-map.2015.0658.
[23] Y. Liu, H. Ruan, L. Wang, and A. Nehorai, "The Random Frequency Diverse Array: A New Antenna Structure for Uncoupled Direction-Range Indication in Active Sensing," IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 2, pp. 295-308, 2017, doi: 10.1109/JSTSP.2016.2627183.
[25] M. Tayyeb Massoud and H. Khaleghi Bizaki, "Optimal Power Allocation for Maximizing Secrecy Rate in Physical Layer Security Using Frequency Diverse Array Directional Modulation and Artificial Noise," (in fa), International Journal of Electrical and Computer Engineering (IJECE), no. 1, pp. 67-75, 2024.
[26] S. Lv, J. Hu, Y. Chen, Z. Xu, and Z. D. Chen, "Establishing Secrecy Region for Directional Modulation Scheme with Random Frequency Diverse Array," in GLOBECOM 2020 - 2020 IEEE Global Communications Conference, 2020, pp. 1-6, doi: 10.1109/GLOBECOM42002.2020.9322647.
[27] F. Shu, X. Wu, J. Li, R. Chen, and B. Vucetic, "Robust Synthesis Scheme for Secure Multi-Beam Directional Modulation in Broadcasting Systems," IEEE Access, vol. 4, pp. 6614-6623, 2016, doi: 10.1109/ACCESS.2016.2614825.
[28] F. Shu, W. Zhu, X. Zhou, J. Li, and J. Lu, "Robust Secure Transmission of Using Main-Lobe-Integration-Based Leakage Beamforming in Directional Modulation MU-MIMO Systems," IEEE Systems Journal, vol. 12, no. 4, pp. 3775-3785, 2018, doi: 10.1109/JSYST.2017.2764142.
[29] S. Wan et al., "Power Allocation Strategy of Maximizing Secrecy Rate for Secure Directional Modulation Networks," IEEE Access, vol. 6, pp. 38794-38801, 2018, doi: 10.1109/ACCESS.2018.2815779.
[30] X. Zhou, J. Li, F. Shu, Q. Wu, Y. Wu, W. Chen, and L. Hanzo, "Secure SWIPT for Directional Modulation-Aided AF Relaying Networks," IEEE Journal on Selected Areas in Communications, vol. 37, no. 2, pp. 253-268, 2019, doi: 10.1109/JSAC.2018.2872372.
[31] J. Hu, F. Shu, and J. Li, "Robust Synthesis Method for Secure Directional Modulation With Imperfect Direction Angle," (in en), IEEE Commun. Lett., vol. 20, no. 6, pp. 1084-1087, 2016, doi: 10.1109/LCOMM.2016.2550022.
[32] A. D. Wyner, "The wire‐tap channel," Bell system technical journal, vol. 54, no. 8, pp. 1355-1387, 1975.
[33] H. Khaleghi Bizaki and M. Tayyeb Masoud, "Deep MIMO Detection with Imperfect CSI," Advanced Signal Processing, vol. 5, no. 1, pp. 1-7, 2021.
[34] H. K. Bizaki and A. Falahati, "Tomlinson–Harashima precoding with imperfect channel side information," The 9th International Conference on Advanced Communication Technology, vol. 2, pp. 987-991, 2007.
[35] H. Khaleghi Bizeki, Wireless Communication Systems, Malek Ashtar University of Technology Publications, First Edition, 2010.
[36] Z. Lu et al. "Optimal power allocation for secure directional modulation networks with a full-duplex UAV user," Science China Information Sciences, vol. 62, no. 8, p. 80304, 2019, doi: 10.1007/s11432-019-9928-5.
[37] F. Shu et al. "Alternating iterative secure structure between beamforming and power allocation for UAV-aided directional modulation networks," Physical Communication, vol. 33, pp. 46-53, 2019, doi: https://doi.org/10.1016/j.phycom.2018.12.003.