مقاوم‌سازی مدولاسیون جهتی مبتنی بر آرایه چندگانگی فرکانسی در برابر خطای تخمین موقعیت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری،دانشگاه صنعتی مالک اشتر،تهران، ایران

2 استاد،دانشگاه صنعتی مالک اشتر، تهران، ایران

چکیده

هم‌زمان با توسعه روزافزون فن‌آوری ارتباطی بی‌سیم مدرن، امنیت و قابلیت اطمینان این سیستم‌ها همواره یکی از چالش‌های پیش روی طراحی آن بوده است. امنیت لایه فیزیکی یک راهکار کارآمد برای تأمین امنیت انتشار در سیستم‌های مخابراتی است که در سال‌های اخیر توجه بسیاری را به خود جلب کرده است. در امنیت لایه فیزیکی مبتنی بر مدولاسیون جهتی چندگانگی فرکانسی، پرتو سیگنال ارسالی به دو بعد زاویه و فاصله وابسته است به‌گونه‌ای که منظومه مدولاسیون صرفاً در محدوده کوچکی در اطراف گیرنده قانونی به‌درستی قابل دریافت بوده و در سایر جهات به‌عمد تخریب می‌شود. اگرچه کار آیی این روش زمانی که موقعیت گیرنده قانونی به‌درستی تعیین گردد، قابل‌قبول است؛ اما با بروز خطای تخمین موقعیت، که امری محتمل در شبکه‌های بی‌سیم سیار است، عملکرد محرمانگی سیستم به‌شدت افت پیدا می‌کند. برای غلبه بر این مشکل، در این مقاله یک راهکار مقاوم‌سازی در برابر خطای تخمین موقعیت ارائه می‌شود به‌گونه‌ای که با بیشینه کردن نرخ محرمانگی ارگادیک سیستم و تخصیص بهینه توان، منجر به بهبود عملکرد امنیت لایه فیزیکی می‌شود. شبیه‌سازی‌های عددی مبین عملکرد مطلوب این روش در مقاوم‌سازی نرخ محرمانگی در برابر خطای تخمین موقعیت گیرنده قانونی است به‌گونه‌ای که نرخ محرمانگی تا یک بیت بر ثانیه بر هرتز در مقایسه با روش غیر‌مقاوم بهبود می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Robust Physical Layer Security Using Frequency Diverse Array Directional Modulation

نویسندگان [English]

  • Mahdi Tayeb Masoud 1
  • - - 2
1 PhD student, Malek Ashtar University of Technology, Tehran, Iran
2 Professor, Malek Ashtar University, Tehran, Iran
چکیده [English]

Parallel to the rapid development of modern wireless communication technologies, the security and reliability of these systems have always been a major challenge in their design. Physical layer security is an effective solution for ensuring security in telecommunications systems, which has gained significant attention in recent years. In physical layer security based on frequency diverse array directional modulation, the beam of the transmitted signal depends on both angle and distance, in a way that the modulation scheme can only be properly received within a small range around the legitimate receiver and is intentionally degraded in other directions. While the effectiveness of this method is acceptable when accurate information about the position of the legitimate receiver is available, it suffers from a severe performance degradation in the presence of positioning estimation errors, which are highly probable in cellular wireless networks. In this paper, a novel solution against positioning estimation errors is proposed to improve the performance of physical layer security by enhancing the secrecy rate of the system. Numerical simulations demonstrate the desirable performance of this method in robustness of the secrecy rate degradation against positioning estimation errors in the legitimate receiver so that the secrecy rate is improved up to one 1 bit per second per Hertz compared to the non-robust method.

کلیدواژه‌ها [English]

  • Physical Layer Security
  • Random frequency Diverse Array
  • Directional Modulation
  • Position Estimation Error
  • Secrecy Rate

Smiley face

 

[1]      Y. Liu, H.-H. Chen, and L. Wang, "Physical Layer Security for Next Generation Wireless Networks: Theories, Technologies, and Challenges," IEEE Communications Surveys & Tutorials, vol. 19, no. 1, pp. 347-376, 2017, doi: 10.1109/COMST.2016. 2598968.
[2]      A. K. Yerrapragada, T. Eisman, and B. Kelley, "Physical Layer Security for Beyond 5G: Ultra Secure Low Latency Communications," IEEE Open Journal of the Communications Society, vol. 2, pp. 2232-2242, 2021, doi: 10.1109/OJCOMS.2021.3105185.
[3]      B. Li, Z. Fei, C. Zhou, and Y. Zhang, "Physical-Layer Security in Space Information Networks: A Survey," IEEE Internet of Things Journal, vol. 7, no. 1, pp. 33-52, 2020, doi:10.1109/JIOT.2019.2943900.
[5]      A. Babakhani, D. B. Rutledge, and A. Hajimiri, "Near-field direct antenna modulation," IEEE Microwave Magazine, vol. 10, no. 1, pp. 36-46, 2009, doi: 10.1109/MMM.2008.930674.
[6]      A. Babakhani, D. B. Rutledge, and A. Hajimiri, "Transmitter Architectures Based on Near-Field Direct Antenna Modulation," IEEE Journal of Solid-State Circuits, vol. 43, no. 12, pp. 2674-2692, 2008, doi: 10.1109/JSSC.2008.2004864.
[7]      M. P. Daly and J. T. Bernhard, "Directional Modulation Technique for Phased Arrays," IEEE Transactions on Antennas and Propagation, vol. 57, no. 9, pp. 2633-2640, 2009, doi: 10.1109/TAP.2009.2027047.
[8]      M. P. Daly, E. L. Daly, and J. T. Bernhard, "Demonstration of Directional Modulation Using a Phased Array," IEEE Transactions on Antennas and Propagation, vol. 58, no. 5, pp. 1545-1550, 2010, doi: 10.1109/TAP.2010.2044357.
[9]      Y. Ding and V. F. Fusco, "A Vector Approach for the Analysis and Synthesis of Directional Modulation Transmitters," IEEE Transactions on Antennas and Propagation, vol. 62, no. 1, pp. 361-370, 2014, doi: 10.1109/TAP.2013.2287001.
[10]      Y. Ding and V. F. Fusco, "Directional modulation far-field pattern separation synthesis approach," IET Microwaves, Antennas & Propagation, vol. 9, no. 1, pp. 41-48, 2015, doi: https://doi.org/10.1049/iet-map.2014.0331.
[11]      W. Q. Wang and H. C. So, "Transmit Subaperturing for Range and Angle Estimation in Frequency Diverse Array Radar," IEEE Transactions on Signal Processing, vol. 62, no. 8, pp. 2000-2011, 2014, doi: 10.1109/TSP.2014.2305638.
[12]      P. Antonik, M. C. Wicks, H. D. Griffiths, and C. J. Baker, "Frequency diverse array radars," in 2006 IEEE Conference on Radar, 24-27 April 2006, p. 3 pp., doi: 10.1109/RADAR.2006.1631800. 
[13]      T. Eker, S. Demir, and A. Hizal, "Exploitation of Linear Frequency Modulated Continuous Waveform (LFMCW) for Frequency Diverse Arrays," IEEE Transactions on Antennas and Propagation, vol. 61, no. 7, pp. 3546-3553, 2013, doi: 10.1109/TAP.2013.2258393.
[14]      Y. Wang, W. Q. Wang, and H. Chen, "Linear Frequency Diverse Array Manifold Geometry and Ambiguity Analysis," IEEE Sensors Journal, vol. 15, no. 2, pp. 984-993, 2015, doi: 10.1109/JSEN.2014.2359074.
[15]      W. Q. Wang, "Range-Angle Dependent Transmit Beampattern Synthesis for Linear Frequency Diverse Arrays," IEEE Transactions on Antennas and Propagation, vol. 61, no. 8, pp. 4073-4081, 2013, doi: 10.1109/TAP.2013.2260515.
[16]      W. Q. Wang, "Subarray-based frequency diverse array radar for target range-angle estimation," IEEE Transactions on Aerospace and Electronic Systems, vol. 50, no. 4, pp. 3057-3067, 2014, doi: 10.1109/TAES.2014.120804.
[17]      P. F. Sammartino, C. J. Baker, and H. D. Griffiths, "Frequency Diverse MIMO Techniques for Radar," IEEE Transactions on Aerospace and Electronic Systems, vol. 49, no. 1, pp. 201-222, 2013, doi: 10.1109/TAES.2013.6404099.
[18]      H. Shao, J. Li, H. Chen, and W. Q. Wang, "Adaptive Frequency Offset Selection in Frequency Diverse Array Radar," IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 1405-1408, 2014, doi: 10.1109/LAWP.2014.2340893.
[19]      H. Huang and W. Q. Wang, "FDA-OFDM for integrated navigation, sensing, and communication systems," IEEE Aerospace and Electronic Systems Magazine, vol. 33, no. 5-6, pp. 34-42, 2018, doi: 10.1109/MAES.2018.170109.
[20]      W.-Q. Wang, "DM using FDA antenna for secure transmission," (in en), IET Microwaves, Antennas & Propagation, vol. 11, no. 3, pp. 336-345, 2016/10/04/ 2016, doi: 10.1049/iet-map.2016.0303.
[21]      W. Khan, I. M. Qureshi, and S. Saeed, "Frequency Diverse Array Radar With Logarithmically Increasing Frequency Offset," IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 499-502, 2015, doi: 10.1109/LAWP.2014.2368977.
[22]      K. Gao, W.-Q. Wang, J. Cai, and J. Xiong, "Decoupled frequency diverse array range–angle-dependent beampattern synthesis using non-linearly increasing frequency offsets," IET Microwaves, Antennas & Propagation, vol. 10, no. 8, pp. 880-884, 2016, doi: https://doi.org/10.1049/iet-map.2015.0658.
[23]      Y. Liu, H. Ruan, L. Wang, and A. Nehorai, "The Random Frequency Diverse Array: A New Antenna Structure for Uncoupled Direction-Range Indication in Active Sensing," IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 2, pp. 295-308, 2017, doi: 10.1109/JSTSP.2016.2627183.
[25]      M. Tayyeb Massoud and H. Khaleghi Bizaki, "Optimal Power Allocation for Maximizing Secrecy Rate in Physical Layer Security Using Frequency Diverse Array Directional Modulation and Artificial Noise," (in fa), International Journal of Electrical and Computer Engineering (IJECE), no. 1, pp. 67-75, 2024. 
[26]      S. Lv, J. Hu, Y. Chen, Z. Xu, and Z. D. Chen, "Establishing Secrecy Region for Directional Modulation Scheme with Random Frequency Diverse Array," in GLOBECOM 2020 - 2020 IEEE Global Communications Conference, 2020, pp. 1-6, doi: 10.1109/GLOBECOM42002.2020.9322647. 
[27]      F. Shu, X. Wu, J. Li, R. Chen, and B. Vucetic, "Robust Synthesis Scheme for Secure Multi-Beam Directional Modulation in Broadcasting Systems," IEEE Access, vol. 4, pp. 6614-6623, 2016, doi: 10.1109/ACCESS.2016.2614825.
[28]      F. Shu, W. Zhu, X. Zhou, J. Li, and J. Lu, "Robust Secure Transmission of Using Main-Lobe-Integration-Based Leakage Beamforming in Directional Modulation MU-MIMO Systems," IEEE Systems Journal, vol. 12, no. 4, pp. 3775-3785, 2018, doi: 10.1109/JSYST.2017.2764142.
[29]      S. Wan et al., "Power Allocation Strategy of Maximizing Secrecy Rate for Secure Directional Modulation Networks," IEEE Access, vol. 6, pp. 38794-38801, 2018, doi: 10.1109/ACCESS.2018.2815779.
[30]      X. Zhou, J. Li, F. Shu, Q. Wu, Y. Wu, W. Chen, and L. Hanzo, "Secure SWIPT for Directional Modulation-Aided AF Relaying Networks," IEEE Journal on Selected Areas in Communications, vol. 37, no. 2, pp. 253-268, 2019, doi: 10.1109/JSAC.2018.2872372.
[31]      J. Hu, F. Shu, and J. Li, "Robust Synthesis Method for Secure Directional Modulation With Imperfect Direction Angle," (in en), IEEE Commun. Lett., vol. 20, no. 6, pp. 1084-1087, 2016, doi: 10.1109/LCOMM.2016.2550022.
[32]      A. D. Wyner, "The wire‐tap channel," Bell system technical journal, vol. 54, no. 8, pp. 1355-1387, 1975.
[33]      H. Khaleghi Bizaki and M. Tayyeb Masoud, "Deep MIMO Detection with Imperfect CSI," Advanced Signal Processing, vol. 5, no. 1, pp. 1-7, 2021.
[34]      H. K. Bizaki and A. Falahati, "Tomlinson–Harashima precoding with imperfect channel side information," The 9th International Conference on Advanced Communication Technology, vol. 2, pp. 987-991, 2007. 
[35]      H. Khaleghi Bizeki, Wireless Communication Systems, Malek Ashtar University of Technology Publications, First Edition, 2010.
[36]      Z. Lu et al.  "Optimal power allocation for secure directional modulation networks with a full-duplex UAV user," Science China Information Sciences, vol. 62, no. 8, p. 80304, 2019, doi: 10.1007/s11432-019-9928-5.
[37]      F. Shu et al.  "Alternating iterative secure structure between beamforming and power allocation for UAV-aided directional modulation networks," Physical Communication, vol. 33, pp. 46-53, 2019, doi: https://doi.org/10.1016/j.phycom.2018.12.003.