[1] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia, D. Poshyvanyk, “When and Why Your Code Starts to Smell Bad,” IEEE/ACM 37th IEEE International Conference on Software Engineering, vol. 1, pp. 403–414, 2017.
[2] M. S. Haque, J. Carver, T. Atkison, “Causes, impacts, and detection approaches of code smell: A survey,” ACMSE '18: Proceedings of the ACMSE Conference, pp. 1-8, 2018.
[3] M. Fowler, “Refactoring: Improving the Design of Existing Code,” Addison-Wesley Professional 2 Ed, pp. 40–48, 2018.
[4] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and A. De Lucia, “On the diffuseness and the impact on maintainability of code smells: A large scale empirical investigation,” in Proceedings of the 40th International Conference on Software Engineering (ICSE), pp. 1188–1221, ACM, 2018.
[5] A. Tahir, J. Dietrich, S. Counsell, S. Licorish, and A. Yamashita, “A large scale study on how developers discuss code smells and anti-pattern in stack exchange sites,” Information and Software Technology, vol. 125, pp. 30–36, 2020.
[6] X. Han, A. Tahir, P. Liang, S. Counsell, Y. Luo, “Understanding Code Smell Detection via Code Review: A Study of the OpenStack Community,” In: IEEE/ACM 29th International Conference on Program Comprehension (ICPC) [Internet]. IEEE, pp.323–34. 2021.
[7] M. Fowler, “Refactoring: Improving the Design of Existing Code,” Addison-Wesley Professional, pp. 25–33 2018.
[8] G. Langelier, H. Sahraoui, P. Poulin, “Visualization-based analysis of quality for large-scale software systems,” in: Proceedings of the 20th IEEE/ACM International Conference on Automated Software Engineering, pp. 214–223, 2014.
[9] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, “The weka data mining software: an update,” ACM SIGKDD Explor. Newsl, vol. 11 (1), pp. 10–18, 2015.
[10] R. Marinescu, “Detection strategies: metrics-based rules for detecting design flaws,” in: 20th IEEE International Conference Proceedings on Software Maintenance, pp. 350–359. 2004.
[11] G. Ganea, I. Verebi, R. Marinescu, “Continuous quality assessment with incode,” Sci. Comput. Program, vol 134, pp. 19–36, 2017.
[12] M. Mantyla, “Bad smells in software-a taxonomy and an empirical study,” Helsinki University of Technology, pp. 303–314, 2003.
[13] B. Venkatesh, J. Anuradha, “A Review of Feature Selection and Its Methods,” Cybern Inf Technol [Internet], vol 19(1), pp.3–26, 2019.
[14] S. Umadevi, KSJ. Marseline, “A survey on data mining classification algorithms,” Proc IEEE Int Conf Signal Process Commun ICSPC, pp. 264–8, 2018.
[15] S. Kanj, F. Abdallah, “Editing training data for multi-label classification with the k-nearest neighbor rule,” Pattern Analysis and Applications, Vol 19(1), pp. 145-161, 2016.
[16] S. Archana, and K. Elangovan, “Survey of classification techniques in data mining,” International Journal of Computer Science and Mobile Applications, Vol 2(2): pp. 65-71. 2014.
[17] S. Roy, S. Mondal, A. Ekbal, MS. Desarkar, “Dispersion Ratio based Decision Tree Model for Classification,” Expert Syst Appl [Internet], vol 116, pp. 1–9, 2019.
[18] S .Huang, CAI. Nianguang, P. Penzuti, S. Narandes, Y. Wang, XU. Wayne, “Applications of support vector machine (SVM) learning in cancer genomics,” Cancer Genomics and Proteomics, vol 15(1), pp. 41–5, 2019.
[19] EO. Kiyak, D. Birant, KU. Birant, “Comparison of Multi-Label Classification Algorithms for Code Smell Detection,” In: 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) [Internet], IEEE, pp.1–6, 2019.
[20] F. Pecorelli, D. Di Nucci, C. De Roover, A. De Lucia, “On the role of data balancing for machine learning-based code smell detection,” MaLTeSQuE 2019 - Proceedings of the 3rd ACM SIGSOFT International Workshop on Machine Learning Techniques for Software Quality Evaluation, co-located with ESEC/FSE. pp. 19–24, 2019.
[21] F. Pecorelli, F. Palomba, D. Di Nucci, A. De Lucia, “Comparing Heuristic and Machine Learning Approaches for Metric-Based Code Smell Detection,” In: IEEE/ACM 27th International Conference on Program Comprehension (ICPC) [Internet], pp. 93–104, 2019.
[22] R. Ibrahim, M. Ahmed, R. Nayak, S. Jamel, “Reducing redundancy of test cases generation using code smell detection and refactoring.” J King Saud Univ - Comput Inf Sci [Internet], vol 32(3) , pp. 367–74, 2020.
[23] T. Guggulothu, SA. Moiz, “Code smell detection using multi-label classification approach,” Software Quality Journal, Vol. 28, pp. 63–86 , 2020.
[24] S. Jain, A. Saha, “Improving performance with hybrid feature selection and ensemble machine learning techniques for code smell detection.” Sci Comput Program [Internet]. Dec, vol 212, pp. 1–34, 2021.
[25] Muhammad Ilyas Azeem, Fabio Palomba, Lin Shi, Qing Wang, “Machine Learning Techniques for Code Smell Detection:
A Systematic Literature Review and Meta-Analysis” Information & Software Technology. January 7, 2019.