روشی نوین در شکل‌دهی پرتو وفقی پهن باند به روش یادگیری عمیق در یک سیستم آرایه‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری ، دانشگاه صنعتی مالک اشتر، تهران، ایران.

2 دانشیار، دانشگاه صنعتی مالک اشتر،تهران،ایران

چکیده

امروزه پهپادهای استراتژیک با امکانات فوق مدرن خود در حوزه­های کامینت، الینت و تصویربرداری با قدرت تفکیک بالا و هدایت و ناوبری آنها و ارسال و دریافت اطلاعات با نرخ بالا از طریق لینک های ارتباطی با ماهواره ها، قادر به جمع آوری اطلاعات ارزشمندی هستند که می­توانند توازن صحنه نبرد را بر هم بزنند و در صورت نیاز قادر به اقدام و انهدام زیرساخت­های استراتژیک کشور خواهند بود. لذا به منظور مقابله با این نوع از پرنده ها استفاده از سامانه ای جنگ الکترونیک که قادر به ردیابی فعال و غیر فعال با توانایی اعمال اخلال، احساس می شود. در این سامانه، بنا به مزیت های فراوان آرایه شدن آنتن­ها و شکل دهی پرتو به صورت الکترونیکی، از این روش استفاده شده است. با توجه به نیازهای عملیاتی، این آرایه ها، بایستی توانایی دریافت سیگنالی پهن باند با پهنای باند لحظه­ای چندین صد مگاهرتز در کل محدوده فرکانس کاری x و Ku را داشته باشد. در آنتن های آرایه­ای با ارسال و دریافت سیگنال­های پهن باند، ساختار شکل­دهی پرتو باند باریک پاسخگوی شکل­دهی پرتو نخواهد بود، لذا از ساختارهای شکل­دهی پرتو پهن باند استفاده می­شود. در ساختارهای پهن باند به دلیل افزایش تعداد ضرایب شکل دهنده از حالت M تایی به حالت M*J تایی، در صورتی که از الگوریتم­های رایج بهینه سازی در شکل دهی پرتو پهن باند به منظور تعیین ضرایب استفاده شود، پیچیدگی محاسباتی و لذا قدرت پردازش مورد نیاز و تاخیر محاسبات بسیار زیاد می­باشد که این موضوع از چالشهای شکل­دهی پرتو در سیستمهای پهن باند به حساب می­آید. در این مقاله به منظور کاهش پیچیدگی محاسباتی از روش یادگیری عمیق استفاده شده است و نشان داده می­شود که روش ارائه شده با حفظ کارایی باعث کاهش پیچیدگی قابل ملاحظه­ای در تعیین ضرایب می­گردد.

کلیدواژه‌ها


عنوان مقاله [English]

A New Method in Wide Band Adaptive Beam Forming By Deep Learning Method In An Array System

نویسندگان [English]

  • Reza janani 1
  • reza fatemi mofrad 2
1 PhD student, malek ashtar university of Technology, Tehran, Iran
2 Associate Professor, Malik Ashtar University of Technology, Tehran, Iran
چکیده [English]

Today, strategic UAVs with their ultra-modern facilities in the fields of COMMAND, ELINT and high-resolution imaging and their guidance and navigation and sending and receiving information at a high rate through communication links with satellites are able to collect valuable information. which can disturb the balance of the battle scene and if needed, they will be able to act and destroy the country's strategic infrastructures. Therefore, in order to deal with this type of birds, it is felt to use an electronic warfare system that is capable of active and passive tracking with the ability to disrupt. In this system, due to the many advantages of antenna array and electronic beam shaping, this method has been used. Depending on the operational needs, these arrays should be capable of receiving several Mhz instant bandwidth signal over the entire operating frequency range x and Ku. In array antennas by sending and receiving broadband signals, the narrow beamforming structure will not respond to the beamforming, so wideband beamforming structures are used. In broadband structures, due to the increase in the number of beamforming coefficients from the M coefficients to the M * J coefficients, if the common optimization algorithms in wideband beam formation are used to determine the coefficients, computational complexity and therefore power The required processing and computational latency are very high, which is one of the challenges of beamforming in wideband systems. In this paper, in order to reduce the computational complexity, the deep learning method has been used and it is shown that the proposed method reduces the complexity by determining the coefficients significant while maintaining efficiency.

کلیدواژه‌ها [English]

  • phased array systems
  • Monitoring and electronic action
  • Wideband Beamforming
  • Deep learning

Smiley face

  • Giagkos, A., et al. Comparing approaches for coordination of autonomous communications UAVs. in 2016 International Conference on Unmanned Aircraft Systems (ICUAS). 2016. IEEE. DOI: 1109/ICUAS.2016.7502551
  • Zolanvari, M., R. Jain, and T. Salman, Potential data link candidates for civilian unmanned aircraft systems: A survey. IEEE Communications Surveys & Tutorials, 2020. DOI: 1109/COMST.2019.2960366
  • Melvin, W.L. and J.A. Scheer, Principles of Modern Radar Vol. II: Advanced Techniques, 2013 by SciTech Publishing. Edison, NJ.
  • Liu, W. and S. Weiss, Wideband beamforming: concepts and techniques. Vol. 17. 2010: John Wiley & Sons.
  • Chen, P., et al., Robust covariance matrix reconstruction algorithm for time-domain wideband adaptive beamforming. IEEE Transactions on Vehicular Technology, DOI: 10.1109/TVT.2018.2885596
  • Monzingo, R.A. and T.W. Miller, Introduction to adaptive arrays. 2004: Scitech publishing.
  • سدیدپور, س.س., همکاران, شباهت معنایی جملات فارسی با استفاده از تطبیق فضای برداری و یادگیری عمیق. پدافند الکترونیکی و سایبری, 2022.
  • ناصحی, م., م. عشوریان, ح. امامی, شناسایی سریع مکان و نوع وسیله نقلیه در تصاویر با استفاده از روش یادگیری عمیق. پدافند الکترونیکی و سایبری, 2022.
  • Li, Y., X. Yang, and F. Liu, Fast and robust adaptive beamforming method based on complex-valued RBF neural network. The Journal of Engineering, 2019. 2019(19): p. 5917-5921. DOI: 10.1049/joe.2019.0275
  • Luijten, B., et al. Deep learning for fast adaptive beamforming. in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2019. IEEE. DOI: 1109/ICASSP.2019.8683478
  • Sallam, T. and A.M. Attiya, Convolutional neural network for 2D adaptive beamforming of phased array antennas with robustness to array imperfections. International Journal of Microwave and Wireless Technologies, DOI: 10.1017/S1759078721001070
  • Ramezanpour, P., M.J. Rezaei, and M.R. Mosavi, Deep-learning-based beamforming for rejecting interferences. IET Signal Processing, 2020. DOI: 10.1049/iet-spr.2019.0495
  • Lin, T. and Y. Zhu, Beamforming design for large-scale antenna arrays using deep learning. IEEE Wireless Communications. letters,2019. DOI:1109/LWC.2019.2943466
  • Zhao, Y., W. Liu, and R.J. Langley, Adaptive wideband beamforming with frequency invariance constraints. IEEE Transactions on Antennas and Propagation, 2011.
  • DOI: 1109/TAP.2011.2110630
  • Oppenheim, A.V. and R.W. Schafer, Digital signal processing(Book). Research supported by the Massachusetts Institute of Technology, Bell Telephone Laboratories, and Guggenheim Foundation. Englewood Cliffs, N. J., Prentice-Hall, 1975.
  • Liu, Y., et al., Robust adaptive wideband beamforming based on time frequency distribution. Ieee Transactions on Signal Processing, 2019. 67(16): p. 4370-4382. DOI: 1109/TSP.2019.2929924
  • Frost, O.L., An algorithm for linearly constrained adaptive array processing. Proceedings of the IEEE, 1972. 60(8): p. 926-935. DOI: 1109/PROC.1972.8817
  • Steyskal, H., Wide-band nulling performance versus number of pattern constraints for an array antenna. IEEE Transactions on Antennas and Propagation, 1983. 31(1): p. 159-163. DOI: 1109/TAP.1983.1142993
  • [19] Takao, K. and K. Komiyama, An adaptive antenna for rejection of wideband interference. IEEE Transactions on Aerospace and Electronic Systems, 1980(4): p. 452-459. DOI: 1109/TAES.1980.308974
  • Mailloux, R.J., Phased array antenna handbook. 2017: Artech house.
  • Van Trees, H.L., Optimum array processing: Part IV of detection, estimation, and modulation theory. 2004: John Wiley & Sons.
  • UltraScale Architecture and Product Data Sheet: Overview. 2017.
  • Skolnik, M.I., Introduction to radar. Radar handbook, 1962. 2: p. 21.
  • Wang, T., et , Deep learning for wireless physical layer: Opportunities and challenges. China Communications, 2017. 14(11): p. 92-111. DOI: 10.1109/CC.2017.8233654
  • Kingma, D.P. and J. Ba, Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. DOI:
  • 48550/arXiv.1412.6980
  • Goodfellow, I., Bengio, and A. Courville, Deep learning. 2016: MIT press.

 

 

 

دوره 11، شماره 3 - شماره پیاپی 43
شماره پیاپی 43، فصلنامه پاییز
آبان 1402
صفحه 35-47
  • تاریخ دریافت: 06 دی 1401
  • تاریخ بازنگری: 22 اردیبهشت 1402
  • تاریخ پذیرش: 11 مرداد 1402
  • تاریخ انتشار: 06 مهر 1402