بهبود نرخ پوشش و کاهش هزینه پایش در پایش جمعی سیار با استفاده از الگوریتم بهینه‌سازی جنگل آشوبگون

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری،گروه مهندسی کامپیوتر، واحد نیشابور، دانشگاه آزاد اسلامی، نیشابور، ایران

2 دانشیار،گروه کامپیوتر، دانشگاه ازاد اسلامی، واحد مشهد،مشهد، ایران.

3 استادیار،گروه کامپیوتر، دانشگاه آزاد اسلامی، واحد نیشابور، نیشابور، ایران

چکیده

در اینترنت اشیا حجم انبوهی از داده‌های مختلف تولید می‌شود که برای پردازش به‌ مرکز داده ارسال می‌گردد. ‌برای افزایش توان پردازشی، اینترنت اشیا مبتنی بر رایانش مه پیشنهاد شده است. در اینترنت اشیا مبتنی بر مه کاربران با تجهیزات هوشمند (مانند گوشی‌های همراه) وظایف را پایش کرده و در انجام آن‌ها مشارکت می‌کنند. به این فرآیند پایش جمعی سیار گفته می‌شود. در پایش جمعی سیار، اختصاص پاداش‌(هزینه) بدون برنامه‌ریزی به کاربران، می‌تواند هزینه‌های بستر را افزایش دهد و قابلیت‌های برنامه‌های کاربردی را تهدید ‌کند. بنابراین تعیین سیاست پاداش منطقی برای کاربران به‌منظور کاهش هزینه‌های بستر به صورتی که نرخ پوشش شبکه نیز بیشنه باشد از چالش‌های مهم در این فناوری است. افزایش نرخ پوشش شبکه و کاهش هزینه‌های بستر را می‌توان در قالب یک مساله بهینه‌سازی مطرح کرد. اما ارائه الگوریتمی که در بهینه‌های محلی کمتر گرفتار شود و بتواند همواره نتایج مطلوبی ارائه دهد خود یک چالش دیگر است. در این مقاله تلاش شده است با بهره‌گیری از تئوری آشوب، و الگوریتم بهینه‌سازی جنگل رویکردی جدید و کارآمد برای پایش جمعی سیار ارائه شود. روش پیشنهادی در نرم‌افزار MATLB پیاده‌سازی شده و تجزیه‌وتحلیل یافته‌ها نشان می‌دهد که روش پیشنهادی توانسته است نرخ پوشش شبکه و هزینه پایش را نسبت به طرح های مشابه بهینه کند.

کلیدواژه‌ها


عنوان مقاله [English]

Improving mobile mass monitoring in the IoT environment based on Chaotic Fog Algorithm

نویسندگان [English]

  • Tahere Motedaien 1
  • Mahdi Yaghoobi 2
  • Maryam kheirabadi 3
1 PhD student. Computer Engineering Dep., Neyshabour Branch, Islamic Azad University, Neyshabour, Iran
2 Associate Professor, Computer Department, Islamic Azad University, Mashhad Branch, Mashhad, Iran.
3 Assistant Professor, Computer Department, Islamic Azad University, Neyshabor Branch, Neyshabor, Iran
چکیده [English]

In the IoT-based IoT environment, users can monitor tasks in the network environment and participate in the data collection process by smart devices. Users monitor their environment data in the form of fog computing during this process, also called mobile mass monitoring, and service providers are required to pay user rewards. But rewards should not be such as to increase platform costs. At the same time, maximizing the maximization rate is one of the main goals of service providers. Increasing network coverage rates and reducing platform costs can be considered as an optimization problem. But providing an algorithm that is less involved in local optimizations and can always provide good results is a challenge in itself. This article is tried to present an efficient approach based on the improved forest optimization algorithm using chaos theory and fuzzy parameter adjustment to reduce platform costs and maximize mobile mass monitoring coverage rate. The proposed method is implemented in MATLAB software and the analysis of the findings shows that the proposed method can optimize the network coverage rate by 31% (average) and the monitoring cost by 11% (average) compared to the CMST plan.

کلیدواژه‌ها [English]

  • Internet of Things
  • mobile mass monitoring
  • Forest Optimization Algorithm
  • Chaos Theory
  • Fuzzy System

Smiley face

[1]           J. Wang, J. Tang, G. Xue, and D. Yang, "Towards energy-efficient task scheduling on smartphones in mobile crowd sensing systems," Computer Networks, vol. 115, pp. 109-100, .2017.
                
[2]           T. Luo, J. Huang, S. S. Kanhere, J. Zhang, and S. K. Das, "Improving IoT data quality in mobile crowd sensing: A cross validation approach," IEEE Internet of Things Journal, vol. 6, no. 3, pp. 5651-5664, .2019. 
[3]           H. Xiong, D. Zhang, L. Wang, J. P. Gibson, and J. Zhu, "EEMC: Enabling energy-efficient mobile crowdsensing with anonymous participants," ACM Transactions on Intelligent Systems and Technology (TIST), vol. 6, no. 3, p. 39, .2015
[4]           M. Kaur and R. Aron, "Energy-aware load balancing in fog cloud computing," Materials Today: Proceedings, .2020
[5]           P. Hu, S. Dhelim, H. Ning, and T. Qiu, "Survey on fog computing: architecture, key technologies, applications and open issues," Journal of network and computer applications, vol. 98, pp. 27-42, .2017
[6]           H. Atlam, R. Walters, and G. Wills, "Fog computing and the Internet of Things: a review," Big Data and Cognitive Computing, vol. 2, no. 2, p. 10, .2018
[7]           X. Wang et al., "A city-wide real-time traffic management system: Enabling crowdsensing in social Internet of vehicles," IEEE Communications Magazine, vol. 56, no. 9, pp. 19-25, .2018.
[8]           H. Xiong, D. Zhang, G. Chen, L. Wang, and V. Gauthier, "Crowdtasker: Maximizing coverage quality in piggyback crowdsensing under budget constraint," in 2015 IEEE International Conference on Pervasive Computing and Communications (PerCom), 2015, pp. 55-62: IEEE.
[9]           O. Yaghmazadeh, F. Cicoira, D. A. Bernards, S. Y. Yang, Y. Bonnassieux, and G. G. Malliaras, "Optimization of organic electrochemical transistors for sensor applications," Journal of Polymer Science Part B: Polymer Physics, vol. 49, no. 1, pp. 34-39, .2011
[10]         T. Li, A. Liu, and C. Huang, "A similarity scenario-based recommendation model with small disturbances for unknown items in social networks," IEEE Access, vol. 4, pp. 9251-9272, .2016
[11]         N. Agarwal, S. Chauhan, A. K. Kar, and S. Goyal, "Role of human behaviour attributes in mobile crowd sensing: a systematic literature review," Digital Policy, Regulation and Governance, vol. 19, no. 2, pp. 168-185, .2017
[12]         J. Wang, C. Hu, and A. Liu, "Comprehensive optimization of energy consumption and delay performance for green communication in Internet of Things," Mobile Information Systems, vol. 2017, .2017
[13]         A. Shahidinejad, " A Mutual Authentication Protocol for IoT Users in Cloud Environment," Journal of Electronical & Cyber Defence, Vol. 9, No. 2, 2021, Serial No. 34
[14]         S. B. Azmy, N. Zorba, and H. S. Hassanein, "Quality of coverage: A novel approach to coverage for mobile crowd sensing systems," in 2018 Global Information Infrastructure and Networking Symposium (GIIS), 2018, pp. 1-5: IEEE.
[15]         J. Yu, M. Xiao, G. Gao, and C. Hu, "Minimum cost spatial-temporal task allocation in mobile crowdsensing," in International Conference on Wireless Algorithms, Systems, and Applications, 2016, pp. 262-271: Springer.
[16]         J. Chen and J. Yang, "Maximizing coverage quality with budget constrained in mobile crowd-sensing network for environmental monitoring applications," Sensors, vol. 19, no. 10, p. 2399, .2019
[17]         H. Ko, S. Pack, and V. C. Leung, "Coverage-guaranteed and energy-efficient participant selection strategy in mobile crowdsensing," IEEE Internet of Things Journal, vol. 6, no. 2, pp. 3202-3211, .2018
[18]         L. Wang, Z. Yu, B. Guo, F. Yi, and F. Xiong, "Mobile crowd sensing task optimal allocation: A mobility pattern matching perspective," Frontiers of Computer Science, vol. 12, no. 2, pp. 231-244, .2018
[19]         S. Song, Z. Liu, Z. Li, T. Xing, and D. Fang, "Coverage-oriented task assignment for mobile crowdsensing," IEEE Internet of Things Journal, vol. 7, no. 8, pp.  7407-7418, .2020
[20]         J. Wang, L. Wang, Y. Wang, D. Zhang, and L. Kong, "Task allocation in mobile crowd sensing: State-of-the-art and future opportunities," IEEE Internet of Things journal, vol. 5, no. 5, pp. 3747-3757, .2018
[21]         C. Wang, C. Li, C. Qin, W. Wang, and X. Li, "Maximizing spatial–temporal coverage in mobile crowd-sensing based on public transports with predictable trajectory," International Journal of Distributed Sensor Networks, vol. 14, no. 8, p. 155014551879351, .2018
[22]         M. Zhang et al., "Quality-aware sensing coverage in budget-constrained mobile crowdsensing networks," IEEE Transactions on Vehicular Technology, vol. 65, no. 9, pp -7698-7707, .2015
[23]         R. F. El Khatib, N. Zorba, and H. S. Hassanein, "Cost-efficient multi-tasking in coverage-aware mobile crowd sensing," in  14th International Wireless Communications & Mobile Computing Conference (IWCMC), 2018, pp. 594-599: IEEE.
[24]         T. Li, Y. Liu, L. Gao, and A. Liu, "A cooperative-based model for smart-sensing tasks in fog computing," IEEE access, vol. 5, pp. 21296-21311, .2017
[25]         B. Guo, C. Chen, D. Zhang, Z. Yu, and A. Chin, "Mobile crowd sensing and computing: when participatory sensing meets participatory social media," IEEE Communications Magazine, vol. 54, no. 2, pp. 131-137, .2016
[26]         L. Luceri et al., "VIVO: A secure, privacy-preserving, and real-time crowd-sensing framework for the Internet of Things," Pervasive and Mobile Computing, vol. 49, pp. 126-138, .2018
[27]         J. Cai, Q. Li, L. Li, H. Peng, and Y. Yang, "A fuzzy adaptive chaotic ant swarm optimization for economic dispatch," International journal of electrical power & energy systems, vol. 34, no. 1, pp. 154-160, 
. 2012
[28]       A. Tharwat and A. E. Hassanien, "Chaotic antlion algorithm for parameter optimization of support vector machine," Applied Intelligence, vol. 48, no. 3, pp. 670-686, .2018
[29]       M. Ghaemi, Feizi Derakhshi, M.R, "Forest optimization Algorithm," Expert Systems with Applications, vol. 41, no. 15, pp. 6676-6687, .2014
دوره 11، شماره 3 - شماره پیاپی 43
شماره پیاپی 43، فصلنامه پاییز
آبان 1402
صفحه 77-88
  • تاریخ دریافت: 06 فروردین 1402
  • تاریخ بازنگری: 04 مرداد 1402
  • تاریخ پذیرش: 29 مرداد 1402
  • تاریخ انتشار: 06 مهر 1402