مسیریابی آگاه از انرژی برای اینترنت اشیا با استفاده از الگوریتم بهینه سازی ملخ بهبود یافته

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، گروه مهندسی کامپیوتر، واحد نیشابور، دانشگاه آزاد اسلامی، نیشابور، ایران

2 دانشیار، گروه مهندسی کامپیوتر، واحد نیشابور، دانشگاه آزاد اسلامی، نیشابور، ایران

3 استادیار، گروه مهندسی کامپیوتر، واحد نیشابور، دانشگاه آزاد اسلامی، نیشابور، ایران

چکیده

مصرف انرژی در فرآیند مسیریابی یکی از چالش های مهم در اینترنت اشیا است؛ چراکه گرههای شبکه از نظر منبع انرژی با محدودیت مواجه هستند. لذا ارائه الگوریتم های مسیریابی انرژی آگاه همواره مورد توجه بوده است. یکی از روش هایی که در این حوزه عملکرد قابل قبولی از خود نشان داده است؛ طرح مساله در قالب مسائل بهینه سازی است. در این مقاله یک رویکرد انرژی آگاه برای مسیریابی در اینترنت اشیا پیشنهاد گردیده که در آن از الگوریتم بهینه سازی ملخ بهبودیافته با تئوری آشوب برای زمانبندی خواب و بیدار گره ها استفاده شده است. برای بررسی کارایی روش پیشنهادی از سه معیار ارزیابی انرژی باقیمانده، طول عمر شبکه و نرخ پوشش استفاده شد. بررسی یافته ها در دو سناریو مختلف (کارایی در طول زمان و کارایی به ازای تعداد گره های مختلف) نشان داد که روش پیشنهادی همواره در تمامی سناریو ها و به ازای همه معیارهای ارزیابی کارایی بهتری نسبت به طرح های پایه دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Energy Aware Routing in the Internet of Things using improved Grasshopper Metaheuristic Algorithm

نویسندگان [English]

  • Masoomeh Mir 1
  • Mahdi Yaghoobi 2
  • Maryam kheirabadi 3
1 PhD student, Department of Computer Engineering, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
2 Associate Professor, Department of Computer Engineering, Neyshabor Branch, Islamic Azad University, Neyshabor, Iran
3 Assistant Professor, Department of Computer Engineering, Neyshabor Branch, Islamic Azad University, Neyshabor, Iran
چکیده [English]

In most Internet of Things (IoT) applications, network nodes are limited in terms of energy source. Therefore, the need for innovative methods to eliminate energy loss which shortens the life of networks is fully felt in such networks. One of the optimization techniques of energy consumption on the Internet of things is efficient energy routing that the required energy can be reduced by choosing an optimal path. In this paper, an informed or efficient energy approach is proposed for routing on the Internet of Things in which focus is on the sleep-wake schedule of nodes; therefore, a new optimization algorithm called chaos fuzzy grasshopper optimization algorithm was used. In chaos fuzzy grasshopper algorithm, the initial population of grasshoppers is generated by Lorenz chaos theory and the input and output parameters of the algorithm are adjusted by fuzzy approach. To evaluate the efficiency of the proposed method, three criteria of evaluation of remaining energy, network life and coverage rate were used. Investigating the findings in two different scenarios (efficiency over time and efficiency per number of different nodes) showed that the proposed method always is better than the base methods in all scenarios and for all performance evaluation criteria. So that in the study of the death of 30% of nodes which indicates the life of the network, results showed that the proposed method of the paper (FLGOA) has 9% better efficiency than FGOA, 12% better than GOA and 16% better than GSO. Also, the findings about the remaining energy of the network showed that the proposed method has 16% better efficiency than FGOA method, 21% better than GOA and 22% better than GSO. Finally, studies in the coverage rate evaluation criterion showed that the proposed method has 12% coverage rate better than FGOA method, 15% better than GOA and 16% better than GSO.

کلیدواژه‌ها [English]

  • Routing
  • Internet of Things
  • Chaos Theory
  • Fuzzy Logic
  • Grasshopper Optimization Algorithm

Smiley face

[1]      U. Z. A. Hamid, H. Zamzuri, and D. K. Limbu, "Internet of vehicle (IoV) applications in expediting the implementation of smart highway of autonomous vehicle: A survey," in Performability in Internet of Things, pp. 137-157, 2019.
[2]      S. Enshaeifar et al., "The internet of things for dementia care," IEEE Internet Computing, vol. 22, no. 1, pp. 8-17, 2018.
[3]      M. Nawir, A. Amir, N. Yaakob, and O. B. Lynn, "Internet of Things (IoT): Taxonomy of security attacks," in 2016 3rd International Conference on Electronic Design (ICED), pp.321-326, 2016.
[4]      A. Oracevic, S. Dilek, and S. Ozdemir, "Security in internet of things: A survey," in 2017 International Symposium on Networks, Computers and Communications (ISNCC), pp.1-6, 2017.
[5]      K. Machado, D. Rosário, E. Cerqueira, A. Loureiro, A. Neto, and J. de Souza, "A routing protocol based on energy and link quality for internet of things applications," sensors, vol. 13, no. 2, pp. 1642-1964, 2013.
[6]      Y. Yuehong, Y. Zeng, X. Chen, and Y. Fan, "The internet of things in healthcare: An overview," Journal of Industrial Information Integration, vol. 1, pp. 3-13, 2016.
[7]      E. T. Chen, "The Internet of Things: Opportunities, Issues, and Challenges," in The Internet of Things in the Modern Business Environment: IGI Global, pp. 167-187, 2017.
[8]      J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, "Internet of Things (IoT): A vision, architectural elements, and future directions," Future generation computer systems, vol. 29, no. 7, pp. 1645-1660, 2013.
[9]      T. Muhammed, R. Mehmood, A. Albeshri, and A. Alzahrani, "HCDSR: A hierarchical clustered fault tolerant routing technique for IoT-based smart societies," in Smart Infrastructure and Applications: Springer, pp. 609-628, 2020.
[10]    H. Singh and D. Singh, "Taxonomy of routing protocols in wireless sensor networks: A survey," in 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I), pp. 822-830, 2016.
[11]    C. Wang and Q. Lin, "Swarm intelligence optimization based routing algorithm for Wireless Sensor Networks," in Neural Networks and Signal Processing, 2008 International Conference on, pp.136-141, 2008.
[12]    A. Jain and S. Jain, "A survey on miscellaneous attacks and countermeasures for RPL routing protocol in IoT," in Emerging Technologies in Data Mining and Information Security: Springer, pp. 611-620, 2019.
[13]    H. Kharrufa, H. A. Al-Kashoash, and A. H. Kemp, "RPL-based routing protocols in IoT applications: A Review," IEEE Sensors Journal, vol. 19, no. 15, pp. 5952-5967, 2019.
[14]    J. Marietta and B. Chandra Mohan, "A review on routing in internet of things," Wireless Personal Communications, vol. 111, no. 1, pp. 209-233, 2020.
[15]    S. Saremi, S. Mirjalili and A. Lewis, "Grasshopper optimisation algorithm: theory and application", Advances in Engineering Software, vol. 105, pp. 30-47, 2017.
[16]    M. Mafarja, I. Aljarah, H. Faris, A. I. Hammouri, A.-Z. Ala’M, and S. Mirjalili, "Binary grasshopper optimisation algorithm approaches for feature selection problems," Expert Systems with Applications, vol. 117, pp. 267-286, 2019.
[17]    R. Yarinezhad and S. Azizi, "An energy-efficient routing protocol for the Internet of Things networks based on geographical location and link quality," Computer Networks, vol. 193, pp. 108-116, 2021.
[18]    B. Shi and Y. Zhang, "A novel algorithm to optimize the energy consumption using IoT and based on Ant Colony Algorithm," Energies, vol. 14, no. 6,  2021.
[19]    A. Chhabra, V. Vashishth, A. Khanna, D. K. Sharma, and J. Singh, "An energy efficient routing protocol for wireless internet-of-things sensor networks," arXiv preprint, 2018.
[20]    Z. Wang, H. Ding, B. Li, L. Bao, and Z. Yang, "An energy efficient routing protocol based on improved artificial bee colony algorithm for wireless sensor networks," IEEE Access, vol. 8, pp. 133577-133596, 2020.
[21]    S. Sankar, S. Ramasubbareddy, F. Chen, and A. H. Gandomi, "Energy-Efficient Cluster-based Routing Protocol in Internet of Things Using Swarm Intelligence," in 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 219-224, 2020.
[22]    S.-H. Park, S. Cho, and J.-R. Lee, "Energy-efficient probabilistic routing algorithm for internet of things," Journal of Applied Mathematics, vol. 2014, 2014.
[23]    S. Yousefi, F. Derakhshan, H. S. Aghdasi, and H. Karimipour, "An energy-efficient artificial bee colony-based clustering in the internet of things," Computers & Electrical Engineering, vol. 86, 2020.
[24] M. Vellanki, S. Kandukuri, and A. Razaque, "Node level energy efficiency protocol for Internet of Things," Journal of Theoretical and Computational Science, vol. 3, 2016.
دوره 11، شماره 1 - شماره پیاپی 41
شماره پیاپی41، فصلنامه بهار
خرداد 1402
صفحه 15-29
  • تاریخ دریافت: 21 آذر 1400
  • تاریخ بازنگری: 11 اردیبهشت 1401
  • تاریخ پذیرش: 03 دی 1401
  • تاریخ انتشار: 01 خرداد 1402