[1] T. Mikolov, K. Chen, G. Corrado, and J. Dean, "Efficient estimation of word representations in vector space," arXiv preprint arXiv:1301.3781, 2013.
[2] P. F. Brown, J. Cocke, S. A. Della Pietra, V. J. Della Pietra, F. Jelinek, J. D. Lafferty, et al., "A statistical approach to machine translation," Computational linguistics, vol. 16, 1990.
[3] Y. K. Meena and D. Gopalani, "Domain independent framework for automatic text summarization," Procedia Computer Science, vol. 48, pp. 722-727, 2015.
[4] A. Bauer, N. Hoedoro, and A. Schneider, "Rule-based Approach to Text Generation in Natural Language-Automated Text Markup Language (ATML3)," in Challenge+ DC@ RuleML, 2015.
[5] T. Becker, "Practical, template–based natural language generation with tag," in Proceedings of the Sixth International Workshop on Tree Adjoining Grammar and Related Frameworks (TAG+ 6), 2002, pp. 80-83.
[6] K. V. Deemter, M. Theune, and E. Krahmer, "Real versus template-based natural language generation: A false opposition?," Computational Linguistics, vol. 31, pp. 15-24, 2005.
[7] A. Ratnaparkhi, "Trainable methods for surface natural language generation," in Proceedings of the 1st North American chapter of the Association for Computational Linguistics conference, 2000, pp. 194-201.
[8] G. Szymanski and Z. Ciota, "Hidden Markov models suitable for text generation," in WSEAS International Conference on Signal, Speech and Image Processing (WSEAS ICOSSIP 2002), pp. 3081-3084.
[9] S. R. Eddy, G. Mitchison, and R. Durbin, "Maximum discrimination hidden Markov models of sequence consensus," Journal of Computational Biology, vol. 2, pp. 9-23, 1995.
[10] S. R. Eddy, "Multiple alignment using hidden Markov models," in Ismb, 1995, pp. 114-120.
[11] A. Skymind, "Beginner's Guide to Deep Reinforcement Learning," ed, 2019.
[12] D. P. Kingma and M. Welling, "Auto-encoding variational bayes," arXiv preprint arXiv:1312.6114, 2013.
[13] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, et al., "Generative adversarial nets," in Advances in neural information processing systems, 2014, pp. 2672-2680.
[14] T. Iqbal and S. Qureshi, "The Survey: Text Generation Models in Deep Learning," Journal of King Saud University-Computer and Information Sciences, 2020.
[15] P. Bachman and D. Precup, "Data generation as sequential decision making," in Advances in Neural Information Processing Systems, 2015, pp. 3249-3257.
[16] D. Bahdanau, P. Brakel, K. Xu, A. Goyal, R. Lowe, J. Pineau, et al., "An actor-critic algorithm for sequence prediction," arXiv preprint arXiv:1607.07086, 2016.
[17] J. Lucas, G. Tucker, R. Grosse, and M. Norouzi, "Understanding posterior collapse in generative latent variable models," 2019.
[18] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz, and S. Bengio, "Generating sentences from a continuous space," arXiv preprint arXiv:1511.06349, 2015.
[19] S. Dai, Z. Gan, Y. Cheng, C. Tao, L. Carin, and J. Liu, "APo-VAE: Text Generation in Hyperbolic Space," arXiv preprint arXiv:2005.00054, 2020.
[20] L. Yu, W. Zhang, J. Wang, and Y. Yu, "SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient," in AAAI, 2017, pp. 2852-2858.
[21] T. Che, Y. Li, R. Zhang, R. D. Hjelm, W. Li, Y. Song, et al., "Maximum-likelihood augmented discrete generative adversarial networks," 2017.
[22] K. Lin, D. Li, X. He, Z. Zhang, and M.-T. Sun, "Adversarial ranking for language generation," in Advances in Neural Information Processing Systems, 2017, pp. 3155-3165.
[23] J. Guo, S. Lu, H. Cai, W. Zhang, Y. Yu, and J. J. a. p. a. Wang, "Long text generation via adversarial training with leaked information," 2017.
[24] Z. Liu, J. Wang, and Z. Liang, "CatGAN: Category-Aware Generative Adversarial Networks with Hierarchical Evolutionary Learning for Category Text Generation," in AAAI, 2020, pp. 8425-8432.
[25] H. Yin, D. Li, X. Li, and P. Li, "Meta-CoTGAN: A Meta Cooperative Training Paradigm for Improving Adversarial Text Generation," in AAAI, 2020, pp. 9466-9473.
[26] K. Wang and X. Wan, "SentiGAN: Generating Sentimental Texts via Mixture Adversarial Networks," in IJCAI, 2018, pp. 4446-4452.
[27] Y. Zhang, Z. Gan, K. Fan, Z. Chen, R. Henao, D. Shen, et al., "Adversarial feature matching for text generation," 2017.[28] M. J. Kusner and J. M. J. a. p. a. Hernández-Lobato, "Gans for sequences of discrete elements with the gumbel-softmax distribution," 2016.
[29] W. Fedus, I. Goodfellow, and A. M. J. a. p. a. Dai, "Maskgan: Better text generation via filling in the _," 2018.
[30] ا. حاجیپور و س. س. سدیدپور, "استخراج خودکار کلمات کلیدی متون کوتاه فارسی با استفاده از word2vec"، پدافند الکترونیکی و سایبری، vol. 8, pp. 105-114, 2020.