بهبود شناسایی هویت از طریق راه رفتن با استفاده از الگوریتم ژنتیک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشگاه بیرجند ، بیرجند ، ایران

2 دانشیار، دانشکده برق، دانشگاه بیرجند، بیرجند، ایران

3 استادیار، دانشگاه بیرجند، بیرجند، ایران

چکیده

راه رفتن یکی از انواع ویژگی‌های بیومتریک است که به‌وسیله آن می‌توان هویت فرد را از ویدیوهای حاوی این بیومتریک شناسایی کرد. برای تشخیص هویت از طریق راه رفتن دو چالش جدی وجود دارد: 1) تغییر در جهت و زاویه راه رفتن 2) تغییر در ظاهر سوژه که به دلایل مختلف ازجمله حمل کیف یا تغییر پوشش ایجاد می‌شود. هر دو چالش ذکرشده عملکرد شناسایی هویت را به‌شدت تحت تأثیر قرار می‌دهد. در این مقاله روشی ارائه شده است که با هر دو چالش مذکور مقابله می‌کند. در روش پیشنهادی ابتدا جهت راه رفتن با استفاده از موقعیت تعدادی از پیکسل‌های منطقه پای انرژی تصویر راه رفتن (GEI) شناسایی می‌شود. این پیکسل‌ها به‌گونه‌ای انتخاب می‌شوند که بیشترین درصد شناسایی را به دنبال داشته باشند. و در ادامه با استفاده از الگوریتم ژنتیک قسمت‌هایی از GEI که در دو حالت حمل کیف و تغییر پوشش بیشترین تغییرات را دارند شناسایی و پوشانده می‌شوند. الگوریتم ژنتیک این قابلیت را دارد که ناحیه بهینه را با دقت خوبی شناسایی و حذف کند به‌طوریکه عملکرد سیستم در برابر تغییرات ظاهری مقاوم باشد. این سیستم منطقاً باید عملکرد خوبی داشته باشد زیرا مرحله شناسایی جهت راه رفتن طوری طراحی شده که از نظر محاسباتی ارزان است و از طرفی الگوریتم ژنتیک به‌گونه‌ای عمل می‌کند که اطلاعات مفید بیشتری در مقایسه با سایر روش‌ها حفظ می‌کند. نتایج نشان می‌دهد که روش پیشنهادی به‌طور میانگین 9/95 درصد شناسایی دارد که این درصد شناسایی نشان از برتری عملکرد این روش نسبت به سایر روش‌هاست.

کلیدواژه‌ها


عنوان مقاله [English]

An Improvement on the Identification via Gait Using the Genetic Algorithm

نویسندگان [English]

  • ammar karizi 1
  • seyed mohammad razavi 2
  • mehran taghipour-gorjikolaie 3
1 PhD student, Birjand University, Birjand, Iran
2 Associate Professor, Faculty of Electrical Engineering, Birjand University, Birjand, Iran
3 Assistant Professor, Birjand University, Tehran, Iran
چکیده [English]

Gait is a biometric feature that can be used to identify individuals from the videos containing this feature. Two main challenges in this type of identification are the change in the direction and angle of walking and the change in the appearance due to various reasons such as carrying a bag or any change in clothes that significantly affect identification. In the present paper, a method is proposed which addresses both challenges. In the proposed method, first, the direction of walking is determined using the position of several pixels in the foot zone of the gait energy image (GEI). The pixels are selected to have the maximum identification percentage. Then, the genetic algorithm is used to identify and mask the zones of GEI with the most changes in both carrying a bag and changing clothes. The GA is capable of identifying and removing the optimized zone with a good precision that makes the system robust when there are changes in the appearance. Logically, the system should have a good performance because the walking direction identification stage is designed in an affordable computing time. Moreover, the GA maintains more useful data comparing to similar techniques. According to the results, an average identification percentage of 95.9% is achieved which confirms the superiority of the proposed method over counterparts .

کلیدواژه‌ها [English]

  • Biometric
  • Gait Energy Image (GEI)
  • Genetic Algorithm (GA)
  • Principal Component Analysis (PCA)
[1] M. S. Nixon, T. Tan, and R. Chellappa, “Human Identification Based on Gait,” Springer US, 2006.
[2] D. Gafurov, “A survey of biometric gait recognition: approaches, security and challenges,” Annual Norwegian Computer Science Conference, 2007.
[3] M. Ju, B. Bhanu, “Individual recognition using gait energy image,” IEEE Transactions Pattern Analysis Machine Intelligence (IEEE T PATTERN ANAL), vol. 28, no. 2, pp. 316–322, 2006.
[4] I. Bouchrika, M. S. Nixon, “Model-based feature extraction for gait analysis and recognition,” International Conference on Computer Vision/Computer Graphics Collaboration Techniques and Applications. Springer, 2007.
[5] M. Goffredo, I. Bouchrika, J. N. Carter, et al., “Performance analysis for gait in camera networks,” 1st ACM Workshop on Analysis and Retrieval of Events/Actions and Workflows in Video Streams, ser. AREA ’08. New York, NY, USA: ACM, 2008.
[6] R. Zhang, C. Vogler, and D. Metaxas, “Human gait recognition at sagittal plane,” Image and Vision Computing, vol. 25, no. 3, pp. 321 – 330, 2007.
[7] C. Yam, M. S. Nixon, and J. N. Carter, “Automated person recognition by walking and running via model-based approaches,” Pattern Recognition, vol. 37, no. 5, pp. 1057–1072, 2004.
[8] R. T. Collins, R. Gross, and J. Shi, “Silhouette-based human identification from body shape and gait,” 5th IEEE International Conference on Automatic Face and Gesture Recognition, 2002
[9] E. Zhang, Y. Zhao, and W. Xiong, “Active energy image plus 2dlpp for gait recognition,” Signal Processing, vol. 90, no. 7, pp. 2295–2302, 2010.
[10] K. Bashir, X. Tao, G. Shaogang, “Gait recognition without subject cooperation,” Pattern Recognition Letter, vol. 31, no. 13, pp. 2052–2060, 2010.
[11] Sh. Mukherjee, K. Chaudhary, et al, “Gait recognition using segmented motion flow energy image,” International Conference of IEEE in Computing, Communication and Networking Technologies (ICCCNT), 2019.
[12] S. Yu, R. Liao, W. An, H. Chen, E. B. G. Reyes, Y. Huang, and N. Poh, “GaitGanv2: Invariant gait feature extraction using generative adversarial networks,” Pattern Recognition (PATTERN RECOGN), vol. 87, pp. 179–189, 2019.
[13] K. Zhang, W. Luo, L. Ma, W. Liu, and H. Li, “Learning joint gait representation via quintuplet loss minimization,” in Computer Vision and Pattern Recognition (CVPR), pp. 4700-4709, 2019.
[14] Y. Zhang, Y. Huang, L. Wang, and S. Yu, “A comprehensive study on gait biometrics using a joint CNN-based method,” Pattern Recognition (PATTERN RECOGN), vol. 93, pp. 228–236, 2019.
[15] Y. He, J. Zhang, H. Shan, and L. Wang, “Multi-task GANs for viewspecific feature learning in gait recognition,” IEEE Transactions Information Forensics Security, vol. 14, no. 1, pp. 102–113, Jan. 2019.
[16] B. Hu, Y. Guan, Y. Gao, Y. Long, N. Lane, and T. Ploetz, “Robust cross-view gait recognition with evidence: A discriminant gait GAN (DiGGAN) approach,” 2018, arXiv: 1811.10493. [Online]. Available: http://arxiv.org/abs/1811.10493
[17] Y. Huang et al., “Attention-based network for cross-view gait recognition,” in International Conference Neural Information Process. Cham, Switzerland: Springer, 2018. 
[18] S. Li, W. Liu, and H. Ma, “Attentive Spatial–Temporal summary networks for feature learning in irregular gait recognition,” IEEE Transactions Multimedia, vol. 21, no. 9, pp. 2361–2375, Sep. 2019. 
[19] X. Ben, C. Gong, P. Zhang, R. Yan, Q. Wu, and W. Meng, “Coupled bilinear discriminant projection for cross-view gait recognition,” IEEE Transactions Circuits System Video Technology, vol. 30, no. 3, pp. 734–747, Mar. 2020.
[20] W. Zeng, and Z. Wang, “View-invariant gait recognition via deterministic learning,” Neurocomputing, vol. 175, pp. 324–335, 2016.
[21] X. Huang, and N. V. Boulgouris, “Human gait recognition based on multiview gait sequences,” EURASIP Journal on Advances in Signal Processing, vol. 1, pp. 1–8, 2008.
[22] R. Cilla, M. A. Patricio, A. Berlanga, and J. M. Molina, “A probabilistic, discriminative and distributed system for the recognition of human actions from multiple views,” Neurocomputing, vol. 75, no. 1, pp. 78–87, 2012.
[23] N. Liu, J. Lu, G. Yang, and Y. P. Tan, “Robust gait recognition via discriminative set matching,” Journal of Visual Communication and Image Representation, vol. 24, no. 4, pp. 439–447, 2013.
[24] W. Kusakunniran, Q. Wu, J. Zhang, and H. Li, “Support vector regression for multi-view gait recognition based on local motion feature selection,” International Conference of IEEE in Computer Vision and Pattern Recognition (CVPR), 2010
[25] W. Kusakunniran, Q. Wu, J. Zhang, and H. Li, “Gait recognition under various viewing angles based on correlated motion regression,” IEEE transactions on circuits and systems for video technology, vol. 22, no. 6, pp. 966–980, 2012.
[26] X. Zhao, Y. Jiang, T. Stathaki, and H. Zhang, “Gait recognition method for arbitrary straight walking paths using appearance conversion machine,” Neurocomputing, vol. 173, pp. 530, 540, 2015.
[27] D. Muramatsu, Y. Makihara, and Y. Yagi, “View transformation model incorporating quality measures for cross-view gait recognition,” IEEE transactions on cybernetics, vol. 46, no. 7, pp. 1602–1615, 2016.
[28] N. Liu, J. Lu, and Y. P. Tan, “Joint subspace learning for view-invariant gait recognition,” IEEE Signal Processing Letters, vol. 18, no. 7, pp. 431–434, 2011.
[29] Y. Dupuis, X. Savatier, and P. Vasseur, “Feature subset selection applied to model-free gait recognition,” Image and vision computing, vol. 31, no. 8, pp. 580–591, 2013.
[30] T. Connie, M. K. O. Goh, and A. B. J. Teoh, “A grassmannian approach to address view change problem in gait recognition,” IEEE transactions on cybernetics, vol. 47, no. 6, pp. 1395 – 1408, 2016.
[31] S. Jia, L. Wang, and X. Li, “View-invariant gait authentication based on silhouette contours analysis and view estimation,” IEEE/CAA Journal of Automatica Sinica, vol. 2, no. 2, pp. 226–232, 2015.
[32] T. Verlekar, P. Correia, L. Soares, “View-invariant gait recognition exploiting spatio-temporal information and a dissimilarity metric,” International Conference of IEEE in Biometrics Special Interest Group (BIOSIG), 2016.
[33] J. Tang, J. Luo, T. Tjahjadi, and F. Guo, “Robust arbitrary-view gait recognition based on 3d partial similarity matching,” IEEE Transactions on Image Processing, vol. 26, no.1, pp. 7–22, 2017.
[34] D. S. Choudhury, T. Tardi, “Robust view invariant multiscale gait recognition,” Pattern Recognition, vol. 48, no. 3, pp. 798–811, 2015.
[35] I. Rida, X. Jiang, and G. L. Marcialis, “Human body part selection by group lasso of motion for model-free gait recognition,” IEEE Signal Processing Letters, vol. 23, no. 1, pp. 154–158, 2016.
[36] T. Yeoh, S. Zapotecas-Mart´ınez, Y. Akimoto, H. Aguirre, and K. Tanaka, “Genetic algorithm assisted by a svm for feature selection in gait classification,” in Intelligent Signal Processing and Communication Systems (ISPACS), 2014 International Symposium on. IEEE, 2014.
[37] F. Tafazzoli, G. Bebis, S. Louis, and M. Hussain, “Genetic feature selection for gait recognition,” Journal of Electronic Imaging, vol. 24, no. 1, pp. 013 036–013 036, 2015.
[38] T. Verlekar, P. Correia, L. Soares, “View-invariant gait recognition system using a gait energy image decomposition method,” IET Biometrics, vol. 6, no. 4, pp. 299–306, 2017.
[39] S. Baluja, and R. Caruana, “Removing the genetics from the standard genetic algorithm,” International Conference in Machine Learning, 1995.
[40] S. Yu, D. Tan, and T. Tan, “A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition,” 18th International Conference on Pattern Recognition (ICPR’06), 2006.
 
[41] Y. Guan, C. Li, Y. Hu, “An adaptive system for gait recognition in multiview environments,” 14th ACM Multimedia and Security Workshop, Coventry, UK, 2012.
[42] X. Zhaopeng, L. Wei, Zh. Qin, et al, “Gait recognition based on capsule network,” Journal of Visual Communication and Image Representation, vol. 59, pp. 159-167, 2019.
 [43] W. Kusakunniran, “Attribute-based learning for gait recognition using spatio-temporal interest points,” Image and Vision Computing, vol. 32, no. 1, pp. 1117–1126, 2014.
[44] P. Arora, M. Hanmandlu, and S. Srivastava, “Gait based authentication using gait information image features,” Pattern Recognition Letters, vol. 68, pp. 336–342, 2015.
 [45] P. Yogarajah, P. Chaurasia, J. Condell, and G. Prasad, “Enhancing gait based person identification using joint sparsity model and -norm minimization,” Information Sciences, vol. 308, pp. 3–22, 2015.
[46] Ch. Xin, W. Jian, L. Wei, et al, “Multi-Gait Recognition Based on Attribute Discovery,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 7, pp. 1697 – 1710, 2018.
[47] O. L. Ait, B. Larbi, Kh. Emad, et al, “Human gait recognition using GEI-based local multi-scale feature descriptors,” Multimedia Tools Applications, vol. 78, pp. 5715-5730, 2019.
[48] I. Ebenezer, S. Elias, Rajagopalan and K. Easwarakumar “View-invariant gait recognition through genetic template segmentation,” IEEE Signal Processing Letters, vol. 24, no. 8, pp. 1188-1192, 2017.
[49] I. R. Alvarez, G. S. Alvarez, “Cross-View Gait Recognition Based on U-Net,” International Joint Conference on Neural Networks (IJCNN), 2020.
[50] Z. Zhang et al., “Gait recognition via disentangled representation learning,” IEEE/CVF Conference Computer Vision and Pattern Recognition (CVPR), Jun. 2019, pp. 4710–4719.
[51] H. Chao, Y. He, J. Zhang, and J. Feng, “Gaitset: Regarding gait as a set for cross-view gait recognition,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 8126–8133.
[52] H. Wu, J. Tian, Y. Fu, et al, “Condition-Aware Comparison Scheme for Gait Recognition,” IEEE Transactions on Image Processing, vol. 30, pp. 2734-2744, 2020.
[53] Z. Zhang, L. Tran, F. Liu, and X. Liu, “On Learning Disentangled Representations for Gait Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 
pp. 1–1, 2020.
دوره 9، شماره 4 - شماره پیاپی 36
شماره پیاپی 36، فصلنامه زمستان
اسفند 1400
صفحه 31-42
  • تاریخ دریافت: 02 دی 1399
  • تاریخ بازنگری: 08 اسفند 1399
  • تاریخ پذیرش: 14 تیر 1400
  • تاریخ انتشار: 01 اسفند 1400