[1] D. A. Benson, M. M. Meerschaert, J. Revielle, “Fractional calculus in hydrologicmodeling: a numerical perspective,” Adv. Water Resour, vol. 51, pp. 479–497, 2013.##
[2] J. K. Popovic, D.T. Spasic, J. Tosic, J. L Kolarovic, and R. Malti, “Fractional model for pharmacokinetics of high dose methotrexate in children with acute lymphoblastic leukaemia,” Commun. Nonlinear Sci. Numer. Simul., vol. 22, pp. 451–471, 2015.##
[3] D. Sierociuk, A. Dzielinski, G. Sarwas, I. Petras, I. Podlubny, and T. Skovranek, “ Modelling heat transfer in heterogeneous madia using fractional calculus,” Phil. Trans. R. Soc. A., vol. 371, pp. 2013-2046, 2013.##
[4] S. Larsson, M. Racheva, and F. Saedpanah, “Discontinuous Galerkin method for an integro-differential equation modeling dynamic fractional order viscoelasticity,” Comput. Method. Appl. Mech. Eng., vol. 283, pp. 196–209, 2015.##
[5] Y. Jiang and X. Wang, “On a stochastic heat equation with first order fractional noises and applications to finance,” J. Math. Anal. Appl., vol. 396, pp. 656–669, 2012.##
[6] G. Bohannan, “Analog fractional order controller in temperature and motor control applications,” J. Vib. Contr., vol. 14, pp. 1487–1498, 2008.##
[7] O. P. Agrawal, “A formulation and numerical scheme for fractional optimal control problems,” J. Vib. Control, vol. 14, pp. 1291–1299, 2008.##
[8] A. Lotfi, S. A. Yousefi, and M. Dehghan, “Numerical solution of a class of fractional optimal control problems via the Legendre orthonormal basis combined with the operationalmatrix and the Gauss quadrature rule,” J. Comput. Appl. Math., vol. 250, pp. 143–160, 2013.##
[9] O. P. Agrawal, “Fractional optimal control of a distributed system using eigenfunctions,” ASME. J. Comput. Nonlinear Dyn., vol. 3, pp. 2- 6, 2008.##
[10] M. Jamshidi and C. M. Wang, “A computational algorithm for large-scale nonlinear time-delay systems,” IEEE Trans. Syst. Man Cybern., vol. 14, pp. 2–9, 1984.##
[11] A. H. Bhrawy and S. S. Ezz-Eldien, “A new Legendre perational technique for delay fractional optimal control problems,” Calcolo, vol. 53(4), pp. 521–543, 2016.##
[12] P. Rahimkhani, Y. Ordokhani, and E. Babolian, “An efficient approximate method for solving delay fractional optimal control problems,” Nonlinear Dynamics, vol. 86(3), pp. 1649–1661, 2016.##
[13] L. Moradi, F. Mohammadi, and D. Baleanu, “A direct numerical solution of time-delay fractional optimal control problems by using Chelyshkov wavelets,” J. Vib. Contr., vol. 25, pp. 1–15, 2018.##
[14] K. Rabiei, Y. Ordokhani, and E. Babolian, “Fractional-order Boubaker functions and their applications in solving delay fractional optimal control problems,” J. Vib. Contr., vol. 24, pp. 3370-3383, 2018.##
[15] E. Safaie, M. H. Farahi, and M. F. Ardehaie, “An approximate method for numerically solving multi-dimensional delay fractional optimal control problems by Bernstein polynomials,” Comput. Appl. Math., vol. 34, pp. 831–846, 2015.##
[16] B. Han and Q. Jiang, “Multiwavelets on the interval,” Appl. Comput. Harmon. Anal., vol. 12, pp. 100–127, 2002.##
[17] E. Keshavarz, Y. Ordokhani, and M. Razzaghi, “Bernoulli wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations,” Appl. Math. Model., vol. 38(24), pp. 6038–6051, 2014.##
[18] E. Ashpazzadeh, M. Lakestani, and M. Razzaghi, “Nonlinear Constrained Optimal Control Problems and Cardinal Hermite Interpolant Multiscaling Functions,” Asian. J. Control., vol. 20, pp. 558–567, 2018.##
[19] H. R. Marzban and M. Razzaghi, “Optimal control of linear delay systems via hybrid of block-pulse and Legendre polynomials,” J. Frankl. Inst., vol. 341, pp. 279–293, 2004.##
[20] M. H. Farahi and M. Dadkhah, “Solving nonlinear time delay control systems by Fourier series,” Int. J. Eng. Res. Appl., vol. 5, pp. 217–226, 2014.##