[1] G. Pandey, D. Rawtani, and Y. K. Agrawal, “Aspects of nanoelectronics in materials development,” Nanoelectronics and Materials Development: IntechOpen, 2016.##
[2] F. Salimzadeh and S. R. Heikalabad, “Design of a novel reversible structure for full adder/subtractor in quantum-dot cellular automata,” Physica B: Condensed Matter, vol. 556, pp. 163-169, 2019.##
[3] C. S. Lent and P. D. Tougaw, “A device architecture for computing with quantum dots,” Proceedings of the IEEE, vol. 85, no. 4, pp. 541-557, 1997.##
[4] P. D. Tougaw and C. S. Lent, “Logical devices implemented using quantum cellular automata,” Journal of Applied physics, vol. 75, no. 3, pp. 1818-1825, 1994.##
[5] M. M. Mano, Computer system architecture: Dorling Kindesley Pearson, 2005.##
[6] L. Chisvin and R. J. Duckworth, “Content-addressable and associative memory: Alternatives to the ubiquitous RAM,” Computer, vol. 22, no. 7, pp. 51-64, 1989.##
[7] M. A. Dehkordi, A. S. Shamsabadi, B. S. Ghahfarokhi et al., “Novel RAM cell designs based on inherent capabilities of quantum-dot cellular automata,” Microelectronics Journal, vol. 42, no. 5, pp. 701-708, 2011.##
[8] S. Hashemi, and K. Navi, “New robust QCA D flip flop and memory structures,” Microelectronics Journal, vol. 43, no. 12, pp. 929-940, 2012.##
[9] S. Angizi, S. Sarmadi, S. Sayedsalehi et al., “Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata,” Microelectronics Journal, vol. 46, no. 1, pp. 43-51, 2015.##
[10] L. H. Sardinha, D. S. Silva, M. A. Vieira et al., “Tcam/cam-qca:(ternary) content addressable memory using quantum-dot cellular automata,” Microelectronics Journal, vol. 46, no. 7, pp. 563-571, 2015.##
[11] A. Sadoghifar and S. R. Heikalabad, “A Content-Addressable Memory structure using quantum cells in nanotechnology with energy dissipation analysis,” Physica B: Condensed Matter, vol. 537, pp. 202-206, 2018.##
[12] S. R. Heikalabad, M. N. Asfestani, and M. Hosseinzadeh, “A full adder structure without cross-wiring in quantum-dot cellular automata with energy dissipation analysis,” The Journal of Supercomputing, vol. 74, no. 5, pp. 1994-2005, 2018.##
[13] A. Orlov, I. Amlani, G. Bernstein et al., “Realization of a functional cell for quantum-dot cellular automata,” Science, vol. 277, no. 5328, pp. 928-930, 1997.##
[14] A. Norouzi and S. R. Heikalabad, “Design of reversible parity generator and checker for the implementation of nano-communication systems in quantum-dot cellular automata,” Photonic Network Communications, pp. 1-13, 2019.##
[15] S. R. Heikalabad, A. H. Navin, M. Hosseinzadeh et al., “Midpoint memory: a special memory structure for data-oriented models implementation,” Journal of Circuits, Systems and Computers, vol. 24, no. 05, pp. 1550063, 2015.##
[16] E. T. Karkaj and S. R. Heikalabad, “Binary to gray and gray to binary converter in quantum-dot cellular automata,” Optik, vol. 130, pp. 981-989, 2017.##
[17] M. N. Asfestani and S. R. Heikalabad, “A unique structure for the multiplexer in quantum-dot cellular automata to create a revolution in design of nanostructures,” Physica B: Condensed Matter, vol. 512, pp. 91-99, 2017.##
[18] C. S. Lent, P. D. Tougaw, W. Porod et al., “Quantum cellular automata,” Nanotechnology, vol. 4, no. 1, pp. 49, 1993.##
[19] Y. Z. Barughi, and S. R. Heikalabad, “A three-layer full adder/subtractor structure in quantum-dot cellular automata,” International Journal of Theoretical Physics, vol. 56, no. 9, pp. 2848-2858, 2017.##
[20] S. K. Rad and S. R. Heikalabad, “Reversible flip-flops in quantum-dot cellular automata,” International Journal of Theoretical Physics, vol. 56, no. 9, pp. 2990-3004, 2017.##
[21] H. Hosseinzadeh and S. R. Heikalabad, “A novel fault tolerant majority gate in quantum-dot cellular automata to create a revolution in design of fault tolerant nanostructures, with physical verification,” Microelectronic Engineering, vol. 192, pp. 52-60, 2018.##
[22] I. Amlani, A. O. Orlov, G. Toth et al., “Digital logic gate using quantum-dot cellular automata,” science, vol. 284, no. 5412, pp. 289-291, 1999.##
[23] W. Liu, L. Lu, M. O'Neill et al., “Design rules for quantum-dot cellular automata” pp. 2361-2364.##
[24] K. Kim, K. Wu, and R. Karri, “Towards designing robust QCA architectures in the presence of sneak noise paths,” pp. 1214-1219.##
[25] M. T. Niemier and P. M. Kogge, “Problems in designing with QCAs: Layout= timing,” International Journal of Circuit Theory and Applications, vol. 29, no. 1, pp. 49-62, 2001.##
[26] M. N. Asfestani and S. R. Heikalabad, “A novel multiplexer-based structure for random access memory cell in quantum-dot cellular automata,” Physica B: Condensed Matter, vol. 521, pp. 162-167, 2017.##
[27] E. T. Karkaj and S. R. Heikalabad, “A testable parity conservative gate in quantum-dot cellular automata,” Superlattices and Microstructures, vol. 101, pp. 625-632, 2017.##
[28] C. S. Lent, P. D. Tougaw, and W. Porod, “Bistable saturation in coupled quantum dots for quantum cellular automata,” Applied Physics Letters, vol. 62, no. 7, pp. 714-716, 1993.##
[29] S.-S. Ahmadpour, M. Mosleh, and S. R. Heikalabad, “A revolution in nanostructure designs by proposing a novel QCA full-adder based on optimized 3-input XOR,” Physica B: Condensed Matter, vol. 550, pp. 383-392, 2018.##
[30] F. Ahmad, G. M. Bhat, H. Khademolhosseini et al., “Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells,” Journal of Computational Science, vol. 16, pp. 8-15, 2016.##
[31] K. Walus, T. J. Dysart, G. A. Jullien et al., “QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata,” IEEE transactions on nanotechnology, vol. 3, no. 1, pp. 26-31, 2004.##