ارائه روشی مبتنی بر درج واترمارک در باند میانی تبدیل کسینوسی گسسته با استفاده از ترکیب الگوریتم ژنتیک و جستجوی ممنوعه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه یزد

2 گروه مهندسی کامپیوتر، دانشگاه یزد، یزد، ایران.

چکیده

این مقاله یک روش نوین برای تعیین باند میانی تبدیل کسینوسی گسسته مبتنی بر ترکیب الگوریتم­ ژنتیک و جستجوی ممنوعه ارائه می‌دهد. مطالعه­های انجام شده در رابطه با سامانه­های واترمارکینگ حوزه فرکانس نشان داده­اند که واترمارک درج شده در باند پایین قابل مشاهده است و از طرفی واترمارک درج شده در باند بالا در برابر حمله­ها مقاوم نیست و مناسب­ترین باند برای درج واترمارک، باند میانی است. در تبدیل کسینوسی گسسته نحوه آرایش اجزای فرکانسی از نظمی مانند تبدیل فوریه برخوردار نیست؛ از این رو سعی شده است تا با استفاده از تبدیل فوریه، باند میانی تصویر را استخراج کرده و سپس با استفاده از ترکیب دو الگوریتم ژنتیک و جستجوی ممنوعه، محل دقیق باند میانی تبدیل کسینوسی گسسته متناظر با تبدیل فوریه به‌دست آورده شود. در این روش به گونه‌ای عمل می­شود که اختلاف تصویر به‌دست آمده از اعمال پنجره باند میانی تبدیل کسینوسی گسسته بر روی تصویر با تصویر خروجی باند میانی تبدیل فوریه به حداقل برسد. بدیهی است که از روش ارائه شده برای تعیین پنجره­های باند پایین و بالای تبدیل کسینوسی گسسته نیز می­توان استفاده کرد. پس از پیاده­سازی و انجام آزمایش­های لازم برای باندهای پایین، میانی و بالا با استفاده از روش پیشنهادی به ترتیب میانگین خطای 0062/0، 0149/0 و 0061/0 به‌دست آمد. این نتایج در مورد تصاویر استفاده شده نتایج رضایت بخشی می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Enhancing E-Security by Inserting a Watermark Using the Combination of Genetic Algorithm and Tabu Search

نویسندگان [English]

  • F. zare 1
  • M. zare 1
  • A. M. Latif 1
  • M. Ghasemzadeh 2
1 yazd university
2 Computer Engineering Department, Yazd University, Yazd, Iran.
چکیده [English]

This paper presents a new method for determining the middle band of discrete cosine transform based on the    combination of genetic algorithm and tabu search. As embedded watermark is visible in low frequencies, and not    resistant against attacks in high frequencies, the most suitable band for embedding is the middle band. In the Fourier domain, it can be determined by some filters but such a method does not exist in the discrete cosine domain. In discrete cosine transform the arrangement of frequency components does not have the orderliness of the Fourier transform itself, so, it is tried to find the middle band of image by Fourier transform and then find the exact location of the      middle band of discrete cosine transform by genetic algorithm and tabu search. In this method, we minimize the     difference between the image that is obtained by applying the middle band of discrete cosine transform mask and the image obtained by the Fourier transform mask. Also, the proposed method can be used for low and high band of     discrete cosine transform masks. The implementation and tests for low, middle and high bands resulted in 0.0062, 0.0149 and 0.0061 averages errors, respectively. These results for the test images are satisfactory.
 

کلیدواژه‌ها [English]

  • Tabu Search
  • Genetic Algorithm
  • Middle Band
  • Fourier Transform
  • Discrete Cosine Transform
[1]     C. M. Pun, “A Novel DFT-Based Digital Watermarking System for Images”, In 8th Int.Conf. on Signal Processing (ISP), vol. 2, pp. 1–6, November  2006.##
[2]     M. D. Swanson, M. Kobayashi, and A. H. Tewfik, “Multimedia Data-Embedding and Watermarking Technologies,”  Proc. of the IEEE, vol. 86, no. 6, pp. 1064-1087, 1998.##
[3]     C. I. Podilchuk, and E. J. Delp, “Digital Watermarking: Algorithms and Applications,”  Signal Processing Magazine, IEEE, vol. 18, no. 4, pp. 33–46, 2001.##
[4]     I. J. Cox, and M. L. Miller, “The First 50 Years of Electronic Watermarking,” EURASIP Journal on Applied Signal Processing (JASP), pp. 126–132, 2002.##
[5]     S. J. Lee, and S. H. Jung, “A Survey of Watermarking Techniques Applied to Multimedia,” IEEE Int. Symp. in Industrial Electronics (ISIE), vol. 1, pp. 272–277, 2001.##
[6]     T. E. Areef, H. S. Heniedy, and O. O. Mansour, “Optimal Transform Domain Watermark Embedding via Genetic Algorithms,” In ITI 3rd Int. Conf. on Information and Communications Technology (IICT), pp. 607–617, 2005.##
[7]     S. C. Chu, H. C. Huang, Y. Shi, S. Y. Wu, and C. S. Shieh, “Genetic Watermarking for Zerotree-Based Applications,” Circuits, Systems & Signal Processing (CSSP), vol. 27, no. 2, pp. 171–182, 2008.##
[8]     H. J. Lee, J. H. Park, and Y. Zheng, “Digital Watermarking Robust against JPEG Compression,”  Information Security, pp. 167-177, November 1999.##
[9]     L. Liu, “A Survey on Digital Watermarking Technologies,” Department of Electrical and Computer Engineering, State University of New York at Stony Brook, pp. 11794–12350, 2005.##
[10]  R. B. Wolfgang, and E. J. Delp, “A watermark for digital images,” Int. Conf. on Image Processing (IIP), vol. 3, pp. 219–222, September 1996.##
[11]  R. B. Wolfgang, C. I. Podilchuk, and  E. J. Delp, “Perceptual Watermarks for Digital Images and Video,” Proc. of the IEEE, vol. 87, no. 7, pp. 1108–1126, 1999.##
[12]  G. C. Langelaar, I. Setyawan, and R. L. Lagendijk, “Watermarking Digital Image and Video Data. A State-of-the-Art Overview,” IEEE Signal Processing Magazine, vol. 17, no. 5, pp. 20–46, 2000.##
[13]  S. D. Lin, S. C. Shie, and J. Y. Guo, “Improving the Robustness of DCT-based Image Watermarking against JPEG Compression,” Computer Standards & Interfaces, vol. 32, no. 1–2, pp. 54–60, 2010.##
[14]  R. Pareek, and P. K. Ghosh, “Discrete Cosine Transformation based Image Watermarking for Authentication and Copyright Protection,” Int. J. of Engineering and Advanced Technology(IJEAT), vol. 1, no. 3, pp. 152–156, 2012.##
[15]  C. I. Podilchuk, and W. Zeng, “Digital Image Watermarking using Visual Models,” Electronic Imaging, Int.Society for Optics and Photonics,  pp. 100–111, 1997.##
[16]  J. Wu, and J. Xie, “Adaptive Image Watermarking Scheme Based on HVS and Fuzzy Clustering Theory” Int. Conf. on Neural Networks and Signal Processing(INNSP), vol. 2, pp. 1493–1496, December 2003.##
[17]  S. E. El-Khamy, and  N. A. El-Yamany, “A New Perceptual Image Watermarking Technique based on Adaptive Fuzzy Clustering,” Radio Science Conf, pp. 1–8, March 2004.##
[18]  N. Zhong, J. M. Kuang, and Z. W. He, “A GA-based optimal image watermarking technique,” Third Int. Conf. on Intelligent Information Hiding and Multimedia Signal Processing, vol. 1, pp. 291–294, November 2007.##
[19]  V. Aslantas, S. Ozer, and S. Ozturk, “A Novel Image Watermarking Method Based on Discrete Cosine Transform using Genetic Algorithm,” IEEE 17th Conf. on Signal Processing and Communications Applications (SPCA), pp. 285–288, April 2009.##
[20]  I. Usman, and A. Khan, “BCH coding and Intelligent Watermark Embedding: Employing both Frequency and Strength Selection,” Applied Soft Computing, vol. 10, no. 1, pp. 332–343, 2010.##
 
[21]  C. C. Lai, “A Digital Watermarking Scheme Based on Singular Value Decomposition and Tiny Genetic Algorithm,” Digital Signal Processing, vol. 21, no. 4, pp. 522–527, 2011.##
[22]  P. Artameeyanant, “Tabu Searching for Watermarking Robust Against Compression and Cropping,” Int. Joint Conf., pp. 4461-4463, October 2006.##
[23]  H. C. Huang, J. S. Pan, F. H. Wang, and C. S. Shieh, “Robust Image Watermarking with Tabu Search Approaches,” IEEE Int. Symposium on Consumer Electronics, Sydney, October 2003.##
[24]  M. R. Fatahi, H. Ghaneiy, and A. M. L. Latif, “A New Approach to Selecting Waterwark in Digital Images Based On Competitive Colonization Algorithm,” J. of Symptom and Data Processing (JSDP), pp. 1-14, 2013 (In Persian).##
[25]  A. Mohammadi, and H. Ghaneiy, “Improve Robustness and Transparency on Watermarking Digital Images Using Multipling of Domains Torque in the Discrete Cosine Transform,” 1 Int. Conf. on New Research Achievements in Electrical & Computer Engineering (IECE), 2016 (In Persian).##
[26]  F. Beiki, and H. Ghaneiy, “Providing Away to Improve the Strenght and Capacity of Digital Image Watermarking Systems,” 3 Int. Conf. on Pattern Recognition & Image Analysis(IPRIA), 2017 (In persian)##
[27]  F. Hasan, and B. Alireza, “Improved Watermarking Systebased on Discrete Fourier Transform and Fuzzy Logic,” J. of Soft Computing and Information Technology(JSCIT), pp. 1-13. 2015 (In persian).##
[28]  X. Zhou, C. Cao, J. Ma, and L. Wang, “Adaptive Digital Watermarking Scheme Based on Support Vector Machines and Optimized Genetic Algorithm,” Mathematical Problems in Engineering, 2018.##
[29]  R. A. Alotaibi, and L. A. Elrefaei, “Text-image Watermarking Based on Integer Wavelet Transform (IWT) and Discrete Cosine Transform (DCT),” Applied Computing and Informatics, vol. 15, no. 2, pp. 191-202, 2019.##
[30]  S. M. R. Mousavi, and A. R. Naghsh, “Robust Digital Image Watermarking Method Using Graph-Based Transform (GBT) and Genetic Algorithm (GA),” J. of Intelligent Procedures in Electrical Technology (JIPET), vol. 10, no. 39, pp. 13-22, 2019 (In persian).##
[31]  J. H. Holland, “An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence,” Adaptation in Natural and Artificial Systems, First Edition, The University of Michigan, USA ,1975.##
[32]  F. W. Glover, and G. A. Kochenberger, “Handbook of Metaheuristics,” Springer Science & Business Media, vol. 57, 2003.##