موقعیت یابی دستگاه های بی سیم با معیار میانه خطای کمترین مربعات وزن دهی شده در حضور سیگنال های مسیر غیر مستقیم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده برق دانشگاه پدافند هوایی خاتم الانبیاء(ص)

2 دانشگاه پدافند هوایی خاتم الانبیا (ص)

3 مخابرات-سیستم، دانشکده برق و کامپیوتر، گروه مخابرات دانشگاه سیستان و بلوچستان

چکیده

در این مقاله، یک روش موقعیت­یابی مبتنی بر دستگاه بر اساس روش خطای کمترین مربعات وزن­دهی شده ارائه می­شود. مهم­ترین چالش در تخمین موقعیت، اثر سیگنال­های مسیر غیر مستقیم در گره­های مرجع است که منجر به داده­های خارج از محدوده و در نهایت کاهش دقت تخمین می­شود. برای این منظور، یک روش جدید از طریق ترکیب روش شناسایی و حذف سیگنال­های مسیر غیر مستقیم و روش وزن­دهی گره­های مرجع ارائه خواهد شد. چالش دیگر موقعیت­یابی، وابستگی شدید سیگنال­های مسیر غیر مستقیم به محیط انتشار سیگنال است. به همین دلیل به‌دست آوردن یک تابع توزیع برای تحلیل رفتار این پدیده بسیار پیچیده و زمان­بر است به خصوص در روش­های تخمین مبتنی بر دستگاه که فرآیند تخمین موقعیت در دستگاه­های هدف متحرک با طول عمر باتری محدود صورت می­پذیرد. بنابراین در این مقاله، یک روش شناسایی سیگنال­های مسیر غیر مستقیم و وزن­دهی گره­های مرجع با پیچیدگی محاسباتی کم که بی­نیاز از داشتن دانش اولیه درباره توابع توزیع بایاس سیگنال­های مسیر غیر مستقیم است، معرفی خواهد شد. در این روش، از تعداد تکرار­های گره­های مرجع در گروه­های تخمین مختلف به عنوان معیاری برای شناسایی سیگنال­های مسیر غیر مستقیم و وزن­دهی گره­های مرجع استفاده خواهد شد. در نهایت با داشتن وزن­های گره­های مرجع، موقعیت دستگاه هدف توسط یک مسئله بهینه­سازی غیرخطی مقید پیاده­سازی و به کمک روش لاگرانژ حل می­شود. نتایج شبیه­سازی نشان می­دهد که روش پیشنهادی عملکرد تخمین موقعیت را نسبت به روش­های خطی و غیرخطی غیر وزنی بهبود می­دهد. در روش پیشنهادی 35 درصد از خطاها مقداری کمتر از 25/0 متر دارند که نسبت به روش­های دیگر بهبود حدود 30 درصدی را نشان می‌دهد. هم­چنین 95 درصد از خطاها کمتر از 2 متر هستند و در مقایسه با روش­هایی که وزن­دهی در آن­ها انجام نمی­شود، دقت تخمین حداقل 20 درصد افزایش می­یابد. هم­چنین در مواردی که تعداد گره­های مرجع یا تعداد گروه­های تخمین کمتری در دسترس است، روش پیشنهادی قابلیت اطمینان بالاتری در تخمین موقعیت دارد. زمانی که حداقل 35 درصد از گره­های مرجع دارای سیگنال­های مسیر مستقیم هستند، دقت موقعیت­یابی در روش ارائه شده بهبود قابل ملاحظه­ای دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Wireless Target Localization Using Median Weighted Least Square Error Metric in the Presence of Non-Line of Sight Signals

نویسندگان [English]

  • J. Khalilpoor 1
  • J. Ranjbar 2
  • M. Kazeminia 3
1 University of Khatam al-Anbia Air Defense
2 University of Khatam al-Anbia Air Defense
3 Telecommunications department, University of Sistan and Baluchestan
چکیده [English]

In this paper, a device-based localization method is proposed based on the weighted least square error. The most important challenge in localization is the effect of non-line of sight signals (NLoS) at reference nodes which cause outliers and degrade the estimation accuracy of localization. To meet this challenge and avoid such consequences, a new method is introduced based on the combination of weighted reference nodes method and identification and elimination of the NLoS signals method. Another challenge is the dependency of NLoS signals on the transmission environment. Based on this reason, obtaining a probability density function (PDF) to analyze the behavior of NLoS signals is complex and time-consuming, specifically in   device-based localization methods that run on mobile wireless targets with limited battery. Therefore, in this paper, a low-complexity method of identification and weighting of NLoS signals is proposed without requiring priority knowledge regarding NLoS bias PDFs. In this method, the frequency of reference nodes in different estimation groups is used to identify and weight the NLoS signals. Finally, the target location is modeled via a constraint non-linear optimization problem and is solved through the Lagrange method.   Simulation results illustrate that the proposed method improves the performance of localization in           comparison to linear and nonlinear unweighted-localization methods. In the proposed method, 35% of   localization errors are lower than 0.25 m showing approximately 30% improvement in the localization   performance.  Moreover, 95% of localization errors are lower than 2 m, and the performance increase by 20% in comparison to the unweighted-localization methods. In the case that the number of reference nodes is small, the proposed method provides higher reliability in the location estimation and specifically, when 35% of reference nodes are the line of sight, the estimation accuracy is increased significantly.
 

کلیدواژه‌ها [English]

  • Localization
  • Weighted Least Square Eerror
  • Non-line of Sight Signals
  • Constraint Non-linear Optimization
 
[1]   M. Anarfarhad, M. R. Mosavi, and A. A. Abedi, “Enhancing Vector Tracking Accuracy of GPS in Weak Signal Condition Based on Adaptive Strong Tracking Kalman Filter,” Journal of Electronical & Cyber Defence, vol. 6, no. 3, pp. 1-12, 2016.
[2]   F. Zafari, A. Gkelias, and K. Leung, “A survey of indoor localization systems and technologies,” 2017.
[3]   H. Chen, G. Wang, and X. Wu, “Cooperative Multiple Target Nodes Localization Using TOA in Mixed LOS/NLOS Environments,” IEEE Sensors Journal, 2019.
[4]   Y.-T. Chan, W.-Y. Tsui, H.-C. So, and P.-c. Ching, “Time-of-Arrival Based Localization Under NLOS Conditions,” vol. 55, no. 1, pp. 17-24, 2006.
[5]   P.-C. Chen, “A Non-Line-of-Sight Error Mitigation Algorithm in Location Estimation,” In Wireless Communications and Networking Conference (WCNC), pp. 316-320, 1999.
[6]   W. Li, Y. Jia, J. Du, and J. Zhang, “Distributed multiple-model estimation for simultaneous localization and tracking with NLOS mitigation,” vol. 62, no. 6, pp. 2824-2830, 2013.##
[7]   R. M. Vaghefi, J. Schloemann, and R. M. Buehrer, “NLOS mitigation in TOA-based localization using semidefinite programming,” In Wireless Positioning Navigation and Communication (WPNC), pp. 1-6, 2013.##
[8]   E. García, P. Poudereux, Á. Hernández, J. Ureña, and D. Guald, “A Robust UWB Indoor Positioning System for Highly Complex Environments,” In Industrial Technology (ICIT), IEEE, pp . 3386-3391, 2015.#3
[9]   P. Ling, C. Shen, K. Zhang, H. Jiao, L. Zheng, and X. Deng, “An Improved NLOS Error Elimination Algorithm for Indoor Ultra-Wideband Localization,” In SENSORS, 2017 IEEE, pp. 1-3, 2017.##
[10] N. Garcia, H. Wymeersch, E. G. Larsson, A. M. Haimovich, and M. Coulon, “Direct Localization for Massive MIMO,” vol. 65, no. 10, pp.                    2475-2487, 2017.##
 [11] C. Geng, X. Yuan, and H. Huang, “Exploiting Channel Correlations for NLOS ToA Localization with Multivariate Gaussian Mixture Models,” IEEE Wireless Communications Letters, 2019.##
 [12] J. Hua, Z. Zheng, B. Jiang, K. Zhou, and G. Zhong, “A Study on Residual Weighting Algorithm for Mobile Localization,” vol. 12, no. 5, 2013.##
[13] C.-H. Park and J.-H. Chang, “Robust       LMedS-Based WLS and Tukey-Based EKF Algorithms Under LOS/NLOS Mixture Conditions,” IEEE Access, vol. 7, pp.  148198-148207, 2019.##
14] R. Casas, A. Marco, J. Guerrero, and J. Falco, “Robust Estimator for Non-Line-of-Sight Error Mitigation in Indoor Localization,” vol. 2006, pp. 156-156, 2006.##