نهان‏ نگاری ویدیوی خام مبتنی‏ بر آشکارسازی مناسب با مصالحه بین پارامترهای شفافیت، مقاومت و ظرفیت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار دانشگاه جامع امام حسین (ع)

2 دانشیار جامع امام حسین(ع)

3 استادیار دانشگاه تهران

چکیده

یکی از ضعف‏های عمده الگوریتم‏های نهان‏نگاری، عدم تخمین مناسب در سمت گیرنده از داده‏ها در آشکارسازی می‏باشد. آشکارسازی مناسب در الگوریتم نهان‏نگاری، با مصالحه سه پارامتر شفافیت، مقاومت، ظرفیت ارتباط مستقیم دارد. الگوریتم پیشنهادی، مصالحه مناسبی بین این سه پارامتر ایجاد می‏کند که با توجه به این موضوع، در این مقاله برای حفظ شفافیت، از درج اطلاعات به­شیوه طیف­گسترده در ضرایب فرکانس میانی موجک استفاده شده است. با به‏دست‏آوردن پارامتر ضریب قدرت مناسب درج اطلاعات ()، از کاهش مقاومت جلوگیری­شده‏ است. سنجش مناسب­بودن نیز توسط نرخ بیت خطا ارزیابی شده است. دو مرحله تنظیم ظرفیت مناسب در یک پوشانه و پوشش کامل درج داده‏های محرمانه، دو مرحله‏ی پیشنهادی است که مربوط به پارامتر ظرفیت می‏باشد. در مرحله اول، ظرفیت مناسب به­معنی مصالحه مناسب پارامتر ظرفیت با پارامتر شفافیت است، یعنی نهان‏نگاری دارای مقادیر مناسب پارامترهای SSIM و PSNR باشد. اگر از پوشانه با آنتروپی پایین استفاده گردد، نتیجه آن ظرفیت پایین ولی مقاومت بالا است. در این وضعیت نرخ بیت­خطا کاهش یافته و این به­معنی نزدیک‏شدن به­مقدار مناسب و به‏عبارتی مقاومت مناسب است. برای جلوگیری از کاهش ظرفیت و برای پوشش کامل درج داده‏های محرمانه، استفاده از فریم‏های ویدیوی خام پیشنهاد شده است. امکان دارد داده‏های محرمانه دارای حجم بالایی باشند و یک پوشانه کافی نباشد و نیاز به بانک پوشانه خواهد بود. از آن‏جا که ممکن است تهیه بانک تصاویر دارای خواص آماری مناسب نزدیک به­هم، کاری مشکل و زمان‏بر باشد، از فریم‏های ویدیوی خام استفاده شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Steganography on raw video based on proper detection and compromise between the parameters of transparency, resistance and capacity

نویسندگان [English]

  • R. Esfahani 1
  • Z. Norozi 2
  • M. A. Akhaei 3
1 Imam Hossein Comprehensive University
2 Imam Hossein Comprehensive University
3 Tehran university
چکیده [English]

One of the major weaknesses of steganography algorithms in detection, is the lack of proper estimation of the data on the recipient side. The appropriate detection in the steganography algorithm is directly related to the tradeoff between the three parameters of transparency, resistance and capacity. The proposed algorithm uses a proper tradeoff between these three parameters. Due to this issue, in this article the inclusion of information in the intermediate frequency coefficients of the wavelet by the Spread Spectrum method has been used in order to maintain transparency. The reduction of resistance is prevented by obtaining the appropriate amplification coefficient parameter for embedding of information. Proper measurement of is also assessed by the error bit rate. Setting the proper capacity in a cover and the full coverage of secret data embedding are the two suggested steps related to the capacity parameter. In the first step, the proper capacity means the proper tradeoff between the capacity parameter and the transparency parameter, i.e. the steganography has the proper values ​​of the SSIM and PSNR parameters. The use of low entropy covers leads to low capacity but also high resistance. In this case, the error bit rate is also reduced, which means getting close to the appropriate value of and the appropriate resistance. In the second step, the use of video frames of Windows Media Video is proposed for full coverage of secret data embedding. Since there may be a massive amount of secret data and a single cover may not be sufficient, a cover bank is required. As creating an image bank with close statistical properties may be difficult and time consuming, the video frames of Windows Media Video have been used.

کلیدواژه‌ها [English]

  • Spread Spectrum
  • Proper Detection
  • Intermediate Frequency Coefficients of the Wavelet
  • amplification coefficient
  • Error Bit Rate
 [1] R. Cogranne and F. Retraint, “Application of hypothesis testing theory for optimal detection of LSB matching data hiding,” Signal Processing, vol. 93, Issue 7, pp. 1724-1737, 2013.##
[2]  S. Bajracharya and R Koju, “An Improved DWT-SVD Based Robust Digital Image Watermarking for Color Images International,” Journal Engineering and Manufacturing, vol. 1, pp. 49-59, 2017.##
[3]  G. Bhatnagar, B. Raman, and Q. M. J. Wu, “Robust watermarking using fractional wavelet packet transform,” Iet Image Processing, vol. 4, pp. 386-397, 2012.##
[4] S.  Ramakrishnan, T.  Gopalakrishnan, and K.  Balasamy, “A wavelet based hybrid SVD algorithm for digital image watermarking,” Signal & Image Processing : An International Journal (SIPIJ), vol. 2, no.3, September 2011.##
[5]  R.  Dejey and S. Rajesh, “An improved wavelet domain digital watermarking for image protection.International,” Journal of Wavelets Multiresolution & Information Processing, vol. 08(01), pp. 19-31, 2010.##
[6]  K. C. Liu, “Wavelet-based watermarking for color images through visual masking AEU,” International Journal of Electronics and Communica-tions, vol. 64(2), pp. 112-124, 2010.##
[7]  Q. Chen and M. Xiong, “Dual Watermarking Based on Wavelet Trans-form for Data Protection in Smart Grid,” International Conference on Information Science and Control Engineering, pp. 1313-1316, 2016.##
[8]   P. Arora1 and M. Chandana, “Efficient Watermarking Algorithm for Digital Images,” International Journal of Advanced Research in Computer and Communication Engineering, vol. 4, Issue 8, August 2015.##
[9]  J. Wang, G. Liu, Y. Dai, and J. Sun, “Locally optimum detection for Barni multiplicative watermarking in DWT domain,” Signal Processing, vol. 88, pp.     117-130, 2008.##
[10] J. A. Bagaskara, T. W. Purboyo, and R. A. Nugrahaeni, “Analysis of JPEG Image Steganography Using SPread Spectrum Method,” International Journal of Applied Engineering Research, ISSN 0973-4562, vol. 12, pp.             13944-13950, no. 23, 2017.##
[11] B. Padmasri and M. Amuthasurabi, “Spread Spectrum Image Steganography with advanced Encryption Key Implementation,” IJARCSSE, vol. 3, Issue 3, March 2013.##
 [12] I. Cox, J. Kilian, and T. Leighton, “Secure Spread Spectrum watermarking for multimedia,” IEEE Trans.Image process, vol. 6, no. 12, pp. 1673-1687, Dec. 1997.##
[13] I. J. Cox, M. L. Miller, and A. L. Mckellips, “Watermarking as communications with side information,” Proceding of the IEEE, vol. 87, pp. 1127-1141, 1999.##
[14] V. Solachidis and I. Pitas, “Optimal detector for multiplicative watermarks embedded in the DFT domain of non-white signals,” EURASIP Journal on Applied Signal Processing, vol. 16, pp. 522-532, 2004.##
[15] M. N. Do and M. Vetterli, “The Contourlet transform: An efficient directional multiresolution image representation,” IEEE Trans. Image Process, vol. 14, no. 12, pp. 2091-2106, 2005.##
[16] M. Barni, F. Bartolini, A. De Rosa, and A. Piva, “A new decoder for the optimum recovery of nonadditive watermarks,” IEEE Trans. Image Process, vol. 10, no. 5, pp. 755–766, 2001.##
[17] S. Liu   H. Yao, and W. Gao, “Steganalysis of data hiding techniques in wavelet domain,” In Proc. of  Int. Conf. on Information Technology: Coding and Computing, ITCC, pp. 751-754, 2004.##
[18] P. C. Su and C. C. J. Kuo, “Steganography in JPEG 2000 compressed images,” IEEE Trans. Consum. Electron, pp. 824–832, 2003.##
[19] E. Ghasemi, J. Shanbehzadeh, and N. Fassihi, “High Capacity Image Steganography Using Wavelet Transform and Genetic Algorithm,” Hong Kong, IMECS, 2011.##
[20] S. D. Seyyedi, V. Sadau, and N. Ivanov, “A Secure Steganography Method Based on Integer Lifting Wavelet Transform,” International Journal of Network Security, vol. 18, no. 1, pp. 124-132, Jan 2016.##
[21] P. Meerwald, “Digital image watermarking in the wavelet transform domain,” Master's Thesis, Salzburg University, Salzburg, Austria, January 2001.##
[22] D. L. Donoho, and I. M. Johnstone, “Ideal adaptation via wavelet shrinkage,” Biometrika, vol. 81, pp.    425-455, 1994.##
[23] A. Fabien and P. Petitcolas, “Watermarking schemes evaluation,” IEEE Signal Processing, vol. 17, no. 5, pp. 58–64, September 2000.##
[24] M. A. Akhaee, S. M. E. Saheaeian, and F. Marvasti, “Contourlet Based Image Watermarking Using Optimum Detector in a Noisy Environment,” IEEE Trans. on Image Processing, vol. 8, no. 6, Apr. 2010.##
[25] M. A. Akhaee, S. M. E. Saheaeian,  F. Marvasti, and B. Sankur, “Robust Scaling-Based Image Multiplicative Watermarking Technique Using Maximum Likelihood Decoder With Optimum Strength Factor,” IEEE Trans. on Multimedia, vol. 11, no. 5, pp. 822-833, Aug. 2009.##
[26] F. Gembicki and Y. Haimes, “Approach to performance and sensitivity multiobjective optimization: The goal attainment method,” IEEE Transactions on Automatic Control, vol. 20, Issue: 6, pp. 769-771, Dec. 1975.##
[27] J. Fridrich, T. Pevny, and J. Kodovsky, “Statistically Undetectable JPEG Steganography: Dead Ends, Challenges, and Opportunities,” Proc. of MM&Sec’07, ACM, 2007.##
[28] R. Chandramouli and N. D. Memon, “Steganography Capacity: A Steganalysis Perspective,” Proc. SPIE Security and Watermarking of Multimedia Contents, pp. 173-177, 2003.##
[29] C. Cachin, “An information theoretic model for steganography,” 2nd Int. Workshop on Information Hiding, pp. 306-318, 1998.##
[30] P. Moulin and M. K. Mihcak, “A framework for evaluating the data hiding capacity of image sources,” IEEE Trans. Image Processing, vol. 11, pp. 1029-1042, 2002.## 
 [31] A. D. Ker, “A capacity result for batch steganography,” Signal Processing Letters, vol. 14, no. 8, pp. 525-528, 2007.##
[32] R. Esfahani, Z. Norozi, and G. Jandaghi, “Cover Selection for More Secure Steganography,” International Journal of Security and Its Applications (IJSIA), vol. 12, no. 1, pp. 21-36, 2018.##
[33] A. D. Ker, “Perturbation Hiding and the Batch Steganography Problem,” Proc. of 10th Information Hiding Workshop, 2008.##
[34] A. D. ‌Ker, “Batch steganography and pooled steganalysis,” Proc. of 8th Information Hiding Workshop, pp. 265-281, 2006.##
[35] A. D. Ker, T. Penvy, J.Kodovsky, and J. Fridrich, “The Square Root Law of Steganographic Capacity,” Proc. of  10th ACM Workshop on Multimedia and security, 2008.##
 [36] N. Kingsbury, “Complex Wavelets for Shift Invariant Analysis and Filtering of Signals,” Applied and Computational Harmonic Analysis, vol. 10, issue. 3, pp. 234-253, 2001.##
[37] A. Sarkar, K. Solanki, and B. S. Manjunath, “Further study on YASS: Steganography based on Randomized Embedding to Resist Blind Steganalysis,” Proc. of SPIE- Security, Steganography, and Watermarking of Multimedia Contents, 2008.##
[38] R. Esfahani, M. A. Akhaee, and Z. Norozi, “A Fast Video Watermarking Algorithm Using Dual Tree Complex Wavelet Transform,” Springer, Multimedia Tools and Application (DOI: 10.1007/s11042-0-18-6892-6),  vol. 77, pp. 1-17, 2018.##