یک طرح جدید و امن برای اشتراک گذاری داده های پزشکی مبتنی‌بر فناوری زنجیره‌بلوکی و رمزنگاری مبتنی بر ویژگی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه جامع امام حسین (ع)

2 دانشکده کامپیوتر، دانشگاه شاهد، ایران

3 دانشکده کامپیوتر، دانشگاه قم

چکیده

با توسعه فناوری اطلاعات الکترونیک، استفاده از پرونده سلامت الکترونیک (EMR) یک رویکرد رایج برای ثبت اطلاعات پزشکی بیماران محسوب می­شود. این اطلاعات در پایگاه­های اطلاعاتی بیمارستان­ها و نهاد­های پزشکی مختلف به­صورت مجزا ثبت و ذخیره می­شود و بیماران هیچ­گونه کنترلی نسبت به اطلاعات پزشکی خود ندارند، با توجه به این‌که اطلاعات پزشکی از دارایی­های مهم افراد و نظام سلامت محسوب می­شود، بنابراین، نگرانی­هایی جدی در خصوص امنیت و حفظ حریم خصوصی داده­های پزشکی و چگونگی دسترسی به این اطلاعات وجود دارد. یکی از چالش­های مهم حوزه سلامت الکترونیک نحوه ذخیره­سازی و دسترسی کنترل­شده به اطلاعات پزشکی می­باشد. ما در این مقاله یک طرح جدید، امن و کارآمد به نام SBA-PHR مبتنی­بر فناوری زنجیره‌بلوکی و رمزنگاری مبتنی­بر ویژگی را برای ثبت و ذخیره­سازی داده‌های پزشکی ارائه کرده­ایم به گونه­ای که در این طرح حریم خصوصی کاربران حفظ شده و اجازه کنترل دسترسی دقیق و دانه­ای به اطلاعات پزشکی بیماران در آن وجود دارد. در طرح SBA-PHR با استفاده از زنجیره‌بلوک­های خصوصی توانسته­ایم حق ابطال دسترسی آنی که از چالش­های رمزنگاری مبتنی­بر ویژگی است را بهبود بخشیم. ما امنیت طرح پیشنهادی خود را در مدل فرمال و درستی عملکرد آن را مبتنی­بر منطق BAN به اثبات می­رسانیم و نشان می­دهیم که طرح پیشنهادی ما محرمانگی داده­های کاربر، گمنامی بیماران و حریم خصوصی آن­ها را به خوبی برآورده می­کند، همچنین پیچیدگی محاسباتی و ذخیره­سازی طرح پیشنهادی ما بیانگر کارا بودن طرح        SBA-PHR و مقیاس­پذیر بدون آن می­باشد.

کلیدواژه‌ها


[1] Wu, Hsin-Te, and Chun-Wei Tsai. “Toward Blockchains for Health-Care Systems: Applying the Bilinear Pairing Technology to Ensure Privacy Protection and Accuracy in Data Sharing,” IEEE Consumer Electronics Magazine vol. 7.4, pp. 65-71, 2018.##
[2] L. Cartwright-Smith, E. Gray, and J. H. Thorpe, “Health information ownership: legal theories and policy implications,” Vand. J. Ent. & Tech. L., vol. 19, p. 207, 2016.##
[3] Kshetri, Nir. “Blockchain's roles in strengthening cybersecurity and protecting privacy,” Telecommunications Policy 41.10, pp. 1027-1038, 2017.##
[4] Azaria, Asaph, et al., “Medrec: Using blockchain for medical data access and permission management,” Open and Big Data (OBD), International Conference on. IEEE, pp. 25-30, 2016.##
[5] Dagher, Gaby G., et al., “Ancile: Privacy-preserving framework for access control and interoperability of electronic health records using blockchain technology,” Sustainable Cities and Society, vol. 39, pp. 283-297, 2018.##
[6] Yue, Xiao, et al., “Healthcare data gateways: found healthcare intelligence on blockchain with novel privacy risk control,” Journal of medical systems, vol. 40.10, pp. 218, 2016.##
[7] Banerjee, Mandrita, Junghee Lee, and Kim-Kwang Raymond Choo, “A blockchain future for internet of things security: a position paper,” Digital Communications and Networks, vol. 4.3, pp. 149-160, 2018.##
[8] K. Harleen, et al., “A Proposed Solution and Future Direction for Blockchain-Based Heterogeneous Medicare Data in Cloud Environment,” Journal of medical systems, vol. 42.8, pp. 156, 2018.##
[9] X. Yue, H. Wang, D. Jin, et al., “Healthcare data gateways: Found healthcare intelligence on blockchain with novel privacy risk control,” Journal of Medical Systems, vol. 40(10), p. 218, 2016.##
[10] Q. Xia, E. B. Sifah, K. O. Asamoah, J. Gao, X. Du, and M. Guizani, “MeDShare: Trust-less medical data sharing among cloud service providers via blockchain,” IEEE Access, vol. 5, pp. 757–767, July 2017.##
[11] P. Kevin, et al., “A blockchain-based approach to health information exchange networks,” Proc. NIST Workshop Blockchain Healthcare, vol. 1, 2016.##
[12] D. Alevtina, et al., “Secure and trustable electronic medical records sharing using blockchain,” AMIA Annual Symposium Proceedings, vol. 2017, American Medical Informatics Association, 2017.##
[13] Karafiloski and A. Mishev, “Blockchain solutions for big data challenges: A literature review,” In Proc. Int. Conf. Smart Technologies, pp. 763–768, 2017.##
[14] A. Shamir, “Identity-based cryptosystems and signature protocols,” Proceedings of CRYPTO1984, vol. 196, LNCS, California, USA, 1984, pp. 47–53, 1984.##
[15] D. Boneh and M. Franklin, “Identity-based encryption from the Weil pairing,” Proceedings of CRYPTO’01, LNCS, vol. 2139, California, USA, pp. 213–229, 2001##.
[16] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” In EUROCRYPT2005, vol. 3494, Cramer R (ed.), LNCS. Springer: Heidelberg, pp. 457–473, 2005.##
[17] G. Vipul, et al., “Attribute-based encryption for fine-grained access control of encrypted data,” Proceedings of the 13th ACM conference on Computer and communications security, Acm, 2006.##
[18] Nakamoto, Satoshi, “Bitcoin: A peer-to-peer electronic cash system,” Consulted, vol. 1, 2012, 2008.##
[19] A. Kosba, et al., “Hawk: The blockchain model of cryptography and privacy-preserving smart contracts,” IEEE symposium on security and privacy (SP). IEEE, 2016.##
[20] C. Cachin, “Architecture of the hyperledger blockchain fabric,” In Workshop on Distributed Cryptocurrencies and Consensus Ledgers, 2016.##
[21] D. Schwartz, N. Youngs, and A. Britto, “The ripple protocol consensus algorithm,” Ripple Labs Inc White Paper, vol. 5, 2014.##
[22] H. Sukhwani, J. M. Mart´ınez, X. Chang, et al., “Performance modeling of PBFT consensus process for permissioned blockchain network (hyper- ledger fabric),” In: Reliable Distributed Systems, pp.        253-255, 2017.##
[23] C. Miguel and B. Liskov, “Practical Byzantine fault tolerance,” OSDI., vol. 99, 1999.##
[24] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals prob- lem,” ACM Transactions on Programming Languages and Systems (TOPLAS), vol. 4, no. 3, pp. 382–401, 1982.##
[25] N. Szabo, “Smart contracts: Building blocks for     dig- ital markets,” EXTROPY: The Journal of Transhumanist Thought, vol. 16, 1996.##
[26] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-based encryption,” Security and Privacy, SP'07. IEEE Symposium on. IEEE, 2007.##
[27] Fujisaki, Eiichiro, and Tatsuaki Okamoto, “Secure integration of asymmetric and symmetric encryption schemes,” Annual International Cryptology Conference, Springer, Berlin, Heidelberg, 1999.##
[28] M. Burrows, M. Abadi, and R. M. Needham, “A logic of authentication,” Proc. R. Soc. Lond. A 426.1871, pp. 233-271, 1989.##
[29] N. Aitzhan and D. Svetinovic, “Security and privacy in decentralized en- ergy trading through             multi-signatures, blockchain and anonymous messag- ing streams,” IEEE Transactions on Dependable and Secure Computing, PP(99):1, 2016.##
[30] S. H. Hosseinian Barzi and H. Maleki, “Hierarchical Fuzzy Identity-Based Encryption,” Electronic and Cyber Defense Magazine, vol. 6, no. 3, 2018. (in Persian)##
[31] D. Hankerson, S. Vanstone, and A. J. Menezes, “Guide to elliptic curve cryptography,” New York, Springer, 2004.##
[32] D. Boneh and M. Franklin, “Identity-based encryption from the weil pairing,” In: Advances in cryptology CRYPTO, New York: Springer, pp. 213–229, 2001.##
 [33] Y. Yang and M. Ma, “Conjunctive keyword search with designated tester and timing enabled proxy      re-encryption function for e-Health clouds,” IEEE Transactions on Information Forensics and Security, vol. 11(4), pp. 746–759, 2016.##
[34] J. Zhang, N. Xue, and X. Huang, “A secure system for pervasive social network-based healthcare,” IEEE Access 4(99), pp. 9239–9250, 2016.##
[35] Q. Xia, E. Sifah, A. Smahi, S. Amofa, and X. Zhang, “BBDS: Blockchain-Based data sharing for electronic medical records in cloud environments,” Information 8(44), pp. 1–16, 2017.##
[36] Zhang, Aiqing, and Xiaodong Lin, “Towards secure and privacy-preserving data sharing in e-health systems via consortium blockchain,” Journal of medical systems, vol. 42.8, p. 140, 2018.##