الگوی انتخاب راه کار عملیاتی برای مقابله عملیات شبکه محور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری جنگ الکترونیک - دانشگاه جامع امام حسین (ع) ، تهران، ایران

2 استادیار، عضو هیات علمی دانشگاه جامع امام حسین (ع)، تهران، ایران

3 استادیار، عضو هیات علمی گروه مهندسی صنایع دانشگاه تربیت مدرس، تهران، ایران

4 استادیار، عضو هیات علمی گروه مهندسی کامپیوتر، واحد میبد، دانشگاه آزاد اسلامی، میبد، ایران

چکیده

صحنه نبرد احتمالی علیه جمهوری اسلامی ایران (ج.ا.ا) به­صورت عملیات شبکه محور و با رویکرد تاثیرمحوری است. یکی از توانمندی‌های مقابله‌ای ج.ا.ا در این صحنه نبرد پیچیده، قابلیت‌های حوزه سایبرالکترونیک است. از چالش‌های مهم طرح‌ریزی عملیات سایبرالکترونیک برای مقابله با چنین صحنه­ نبردی در فرایند تصمیم‌گیری نظامی، مقایسه و انتخاب راه­کارهای عملیاتی می­باشد. تعدد، وابستگی‌های متقابل، بازخوردها و تأثیرات مستقیم و غیرمستقیم بین شاخص‌های عملیات شبکه محور، مقایسه و انتخاب راه­کار عملیاتی را به یک مسئله پیچیده، تبدیل کرده است. در این مقاله الگوی تصمیم برای انتخاب راه­کار عملیاتی با در نظر گرفتن پیچیدگی مسئله، بر اساس روش‌های ترکیبی دیمتل-تحلیل فرایند شبکه‌ای و تاپسیس، ارائه ‌شده است. الگوی پیشنهادی شامل سه مرحله است. در مرحله اول، تولید داده معتبر توسط خبرگان منتخب به‌عنوان ورودی داده، استفاده‌ شده است. مرحله دوم، پردازش داده شامل محاسبه شبکه تأثیر شاخص‌هاست که نحوه تأثیرگذاری شاخص‌ها را مدل می‌کند. سپس وزن نسبی شاخص‌ها با در نظر گرفتن روابط بین آن‌ها محاسبه‌ می‌شود. مرحله سوم ارزیابی و انتخاب بر اساس میزان شباهت به جواب ایده‌آل می‌باشد. برای ارزیابی الگوی پیشنهادی، سناریوی واقعی عملیات شبکه محور سپاه زمینی پنجم آمریکا در 21 الی 22 مارس 2003 به‌عنوان عملیات تصرف «پایگاه هوایی تلیل» مورد ارزیابی قرار گرفت. در این عملیات، شاخص تعاملات بین مراکز فرماندهی سپاه پنجم (180 مرکز فرماندهی) به‌عنوان مهم‌ترین شاخص تعیین گردید. کیفیت شبکه‌سازی نیروها که اساس آن بر پایه سامانه‌های FBCB2/BFT ایجاد شده به‌عنوان اثرگذارترین و اثربخشی ماموریت تأثیرپذیرترین شاخص در صحنه نبرد، تعیین شد. در گام دوم، میزان وزن نسبی شاخص‌ها تعیین شد که چابکی و اثربخشی بیشترین وزن و کیفیت اطلاعات کمترین وزن را به خود اختصاص داده است. از بین راه­کارهای سایبرالکترونیک پیشنهادی توسط خبرگان، اختلال باند L ارتباط ماهواره‌ای، تزریق ویروس الکترونیکی به ترتیب راه­کارهای مؤثر در مقابله با مأموریت سپاه پنجم آمریکا برای تصرف پایگاه هوایی تلیل بوده است. صحت و رضایتمندی نتایج این الگو توسط خبرگان منتخب فرماندهی مورد ارزیابی و تأیید قرارگرفته است.

کلیدواژه‌ها


عنوان مقاله [English]

The Course of Action Selection Model in Network Centric Operation

نویسندگان [English]

  • M. Mollazadeh Golmahale 1
  • H. R. Lashkarian 2
  • H. R. Sheikhmohammadi 3
  • K. Mirzaei 4
1 imam hossein university
2 imam hossein university
3 Tarbiatmadarres university
4 azad maybod
چکیده [English]

The potential battle scene against the Islamic Republic of Iran (I.R.I) is network-centric operation with Effect Based approach. One of the I.R.I capabilities in this complex battle scene is the capabilities of the cyber-electronics. One of the major challenges of planning cyber-electronic operations for confrontation in such a battle scene in the military decision-making process, is comparing and selecting courses of actions (COAs). The multiplicity, interdependencies, direct and indirect effects of the network centric operation criteria have made comparison and selection of COAs, a complex problem. In this paper, the decision model for choosing an operational solution with consideration of the complexity of the problem is presented based on hybrid methods DANP and TOPSIS. The proposed model consists of three steps.  In the first step, valid data produced by selected experts is used as data input. In the second step, data processing involves        calculating an influential criteria network (which models the influence of criteria) and finding the influential weights of DANP (DEMATEL-based ANP) considering the relationships between them. The third stage of evaluation and selection is based on the level of similarity to the ideal solution (TOPSIS). In order to     evaluate the proposed model, the real scenario of network centric operation of the US Operation Iraqi   Freedom (OIF) from March 21 to 22, 2003 was evaluated. In this operation, the interactions between the 5th Corps command posts (180 posts) were identified as the most important criteria. The quality of force      networking based on FBCB2 / BFT systems, and mission effectiveness were determined respectively as the most effective and the most influenced criteria on the battlefield. In the second step, the relative weights of the criteria were determined assigning the highest weights to agility and effectiveness and the lowest weight to the quality of information. Among the cyber-electronics solutions offered by the experts, the L-satellite Jamming and the injection of electronic malicious code, were the effective ways to confront the 5th US  Army Corps mission to capture Talil air base. The selected expert commanders declared the results of this case study as valid and satisfactory.

کلیدواژه‌ها [English]

  • Network Centric Operation
  • Multiple-Criteria/Attribute Decision-making
  • DEMATEL-Based Analytic Network Process (DANP)
  • TOPSIS Method
  • Cyber-Electronic Capabilities
[1]     US. DOD “Net-Centric Environment Joint Functional Concept,” US Department of Defense, Washington, DC, 2005##.
[2]     J. Moffat “Complexity Theory and Network Centric Warfare,” Washington, DC, 2003##.
[3]     D. Cammons and J. B. Tisserand, “Network Centric Warfare Case Study, U.S. V Corps and Third Infantry Division during Operation Iraqi,” United States Army War College, 2006##.
[4]     PA Consulting Group, “A Network Centric Operations Case Study: US/UK Coalition Combat Operations during Operation Iraqi Freedom,” Jun. 2004##.
[5]     H. Tunnell, “Task Force Stryker Network-Centric Operations in Afghanistan,” National Defense University Center for Technology and National Security Policy, Washington, DC., 2011##.
[6]     U.S. Military, U.S. Government, “Task Force Stryker Network-Centric Operations in Afghanistan - Case Study of Real-World Application in War,” Network Components, Echeloning Command Posts, Tactical Decisionmaking, 2017.##
[7]     G. C. A. Byford, “Air Power Review: Network Enabled Capability, Air Power and Irregular Warfare: The Israeli Air ForceExperience in the Lebanonand Gaza, 2006-2009,” Director Defence Studies (RAF), 2010##.
[8]     McDermott, “Russia Tests Network-Centric Air Operations in Syria,” Eurasia Daily Monitor Volume: 12 Issue: 184, 2015##.
[9]     R. McDermott, “Russia’s Network-Centric Warfare Experiment in Syria,” Eurasia Daily Monitor, vol. 13, Issue 76, 2016##.
[10]  D. Alberts, S. John, J. Garstka, and P. S. Frederick, “Network Centric Warfare: Developing and leveraging information superiority,” Washington DC: CCRP, 1999.##
[11]  G. J. Flynn, “Marine Corps Planning Process,” US Marine Corps, 2016##.
[12]  Department of the Army, “Electronic Warfare Techniques,” Army Techniques Publication, 2014##.
[13]  M. Mollazade Golmahalleh, H. R. Lashkarian, M. Sheikh Mohammadi, and K. Mirzai, “Evaluation of Network Centric Operation Criteria Based on DEAMATEL Method,” Journal of Electronic Defense and Cyber Defense, 2018. (in Persian)##
[14]  D. E. Wilkins, “Planning and reacting in uncertain and dynamic environments,” Journal of Experimental and Theoretical AI, 1995##.
[15]  H. Munoz Avila, D. Aha, L. Breslow, and D. Nau, “HICAP: an interactive case-based planning architecture andits application to noncombatant evacuation operations,” In IAAI-99, 1999.##
[16]  U. Kuter, D. Nau, D. Gossink, and J. F. Lemmer, “Interactive course-of-action planning using causal models,” Third International Conference on Knowledge Systems for Coalition Operations, 2004.##
[17]  J. Caroli, D. Fayette, et al, “Tools for Effects Based Course of Action Development and Assessment,” Air Force Research Lab, 2004##.
[18]  J. B. G. B. Ken Barker1, “A Knowledge Acquisition Tool for Course of Action Analysis,” American Association for Artificial Intelligence, 2004.##
[19]  J. Hanna, J. Reaper, T. Cox, and M. Walter, “Course of Action Simulation Analysis,” International Command and Control Research and Technology, 2006.##
[20]  D. A. Gilmour, J. P. Hanna, W. E. McKeever Jr., and M. J. Walter, “Real-Time Course of Action Analysis,” Air Force Research Laboratory, Information Directorate, 2006.##
[21]  E. Hsu, “A group-oriented framework for coalitions Operations,” The Second International Conference on Knowledge Systems, France, 2002##.
[22]  J. M. Fletcher, “A system for building holonic coalitions for Coalition Operations,” The Second International Conference on Knowledge Systems, France, 2002.##
[23]  G. Edwards, B. Kettler, K. Olin, and B. Tsurutani, “Agents on the semantic object web: Information management for coalition operations,” The Second International Conference on Knowledge Systems, France, 2002.##
[24]  L. A. Maier, “Technical Supplement for Course of Action Simulator,” Technical Paper: Laboratory for Unconventional Conflict Analysis and Simulation, 2014##.
[25]  Saaty, “Decision making with dependence and feedback: Analytic network process,” RWS Publications, 1996##.
[26]  E. Fontela and A. Gabus, “DEMATEL Observer,” Batelle Research Institute, Geneva, Switzerland, 1976##.
[27]  Balani, E. Asghizadeh, A. Mohammadi, “Multi-criteria decision making techniques,” Tehran: Tehran University Press, 2017. (in Persian)##
[28]  S.-L. Si, H.-C. Liu, et al, “DEMATEL Technique: A Systematic Review of the State-of-the-Art Literature on Methodologies and Applications,” Mathematical Problems in Engineering, 2018.##
[29]  Y. J. Chiu, H. C. Chen, G. H. Tzeng, and J. Z. Shyu, “Marketing strategy based on customer behavior for the LCD-TV,” International Journal of Management and Decision Making, 2006##.
[30]  J. J. H. Liou, G. H. Tzeng, and Chang, “Airline safety measurement using a hybrid model,” Air Transport Management, 2007##.
[31]  C. J. W. Lin, “A causal analytical method for group decision-making under fuzzy environment,” Expert Systems with Applications, 2008##.
[32]  A. Taghizadeh, “Using DEMATEL – Analytic network process (ANP) hybrid algorithm approach for selecting improvement projects of Iranian excellence model in healthcare sector,” African Journal of Business Management, 2012##.
[33]  C.-H. Hsu, Fu-Kwun Wang, and Gwo-Hshiung Tzeng, “The best vendor selection for conducting the recycled material based on a hybrid MCDM model combining DANP with VIKOR,” Resources, Conservation and Recycling, 2011##.
[34]  Q.-G. Shao, J. Liou, and S.-S. Weng, “Improving the Green Building Evaluation System in China Based on the DANP Method,” Sustainability, p. 14, 2018##.
[35]  US. OFT, “Network Centric Operations Conceptual Framework Version 1.0,” Evidence Based Research Inc, 2003##.
[36]  US. DoD, “Network Centric Warfare,” Department of Defense Report to Congress, Washington, DC, 2001##.
[37]  H. E. Gonzales, “Network-centric operations case study: air-to-air combat with and without Link 16,” the RAND Corporation, 2005##.
 [38]  A. L. M. (DOD) ,“Report on Network Centric Warfare Sense of the Report,” DOD, 2001##.
[39]  DOD, “Network Centric Operations (NCO) Case Study. U.S. Navy’s Fifth Fleet Task Force 50 in Operation Enduring Freedom,” Department of Defense Office, 2006##.
[40]  D. Gonzales, “Network-centric operations case study: the Stryker Brigade Combat Team,” the RAND Corporation, 2005##.
[41]  US. GOV, “PUBLIC LAW 106–398,” United state printing office, 2001##.
[42]  L. A. A. N. Zulkifi, “Integration of fuzzy AHP and interval type-2 fuzzy DEMATEL: an application to human resource management,” Expert Systems with Applications, pp.          4397–4409, 2015.##
 [43]  A. M. Saeedpoor, “An intuitionistic fuzzy DEMATEL methodology for prioritising the components of SWOTmatrix in the Iranian insurance industry,” International Journal, pp. 439–452, 2014##.
[44]  V. K. Govindan, “Intuitionistic fuzzy based DEMATEL method for developing greenpractices and performances in a green supply chain,” Expert Systems with Applications, pp. 7207–7220, 2015.##
[45]  B. F. P. Fan, “Identifying risk factors of IT outsourcing using interdependent information: an extended DEMATEL method,” Xpert Systems with Applications, pp. 3832–3840, 2012##.
[46]  M. Y. Li, “An evidential DEMATEL method to identify critical success factors in emergency management,” Applied SOF Computing, pp. 504-510, 2014##.
[47]  B. D. N. Allsopp, “Coalition agents experiment: Multiagent cooperation in international coalitions,” IEEE Intelligent Systems, 2002##.