یک الگوریتم یکپارچه برای آشکارسازی بهینه اهدافِ ضعیف راداری پنهان‌شده در گلبرگ‌های جانبی یک هدف بزرگ

نوع مقاله : مقاله پژوهشی

نویسندگان

ihu

چکیده

هدف ضعیف در رادار به اهدافی گفته می­شود که به­صورت عادی سطح مقطع راداری کمی داشته باشد و یا این­که به­صورت عمدی میزان سیگنال برگشتی از این اهداف کاهش یافته باشد. برای آشکارسازی یک هدفِ ضعیف، الگوریتم­های مختلفی وجود دارد. اما در شرایطی که این هدف در مجاورت یک هدف بزرگ باشد، لوب­های جانبی خروجی فیلترِ منطبقِ ناشی از هدفِ بزرگ، هدف ضعیف را می­پوشاند و یا پنهان می­سازد. فیلتر فشرده­سازی پالس وفقی که از تخمین­گر RMMSE بهره می­برد، توانایی آشکارسازی هدف ضعیف پوشیده شده را دارد. اما حداقل سه عامل محدودکننده (بار محاسباتی، مقاومت در برابر دوپلر و گرفتگی پالس) برای پیاده­سازی و کاربردهای عملی RMMSE وجود دارد. در این مقاله الگوریتمی بهینه و یکپارچه مبتنی­بر پساپردازش وفقی، برای آشکارسازی اهداف و غلبه­بر چالش­های RMMSE در   سامانه­های پدافندی الکترونیکی پیشنهاد می­گردد. مقایسه کیفی عملکرد الگوریتم پیشنهادی  FFL-APCRبه­ازاء SNRها و سرعت­های مختلف اهداف با دیگر الگوریتم­ها، نشان می­دهد که الگوریتم FFL-APCR برای پیاده­سازی در سامانه­های زمان واقعی مناسب است. الگوریتم FFL-APCR می­تواند اهداف ضعیف با سرعت­های زیاد و دچار گرفتگی پالس را با بار محاسباتی کمتر آشکار نماید.  

کلیدواژه‌ها


عنوان مقاله [English]

An Integrated Algorithm for Optimal Detection of Weak Radar Targets Masked by the Sidelobes of a Strong Target

نویسندگان [English]

  • Reza Keyvanshokooh
  • Majid Okhovvat
چکیده [English]

The targets that either have low radar cross-section typically, or their return signal has been             deliberately reduced are referred to as weak targets in radar terminology. There are several algorithms for detection of a weak moving target. When such a target is in the vicinity of a large target, the side lobes of the matched filter output due to the large target mask or hide the weak target. The adaptive pulse          compression filter that uses the RMMSE estimator has the ability to detect the masked weak target.       However, there are at least three factors (computational load, Doppler robustness and pulse eclipsing) which limit the practical application of RMMSE. In this paper, an optimized and integrated algorithm based on adaptive post-processing is proposed to detect targets and to overcome the challenges of RMMSE in electronic defense systems. The FFL-APCR proposed algorithm when compared qualitatively to other     algorithms indicates better performance for different SNRs and various target velocities, showing that it is more suitable for implementation in real-time systems. The FFL-APCR algorithm can detect high speed and pulse eclipsed weak targets with lower computational load.
 

کلیدواژه‌ها [English]

  • Matched Filter
  • Adaptive Pulse Compression
  • Eclipsing Pulse
  • Adaptive Post-Processing
  • Reiterative Minimum Mean Square Error
M. I. Skolnik, Introduction to Radar Systems, 3rd ed., New York: McGraw-Hill, 2001.##
R. Kayvan Shokooh and M. Okhovvat, “Design and implementation of parallel matched filter bank in pulse compression radars,” Journal of Passive Defence Science and Technology, vol. 1, no. 2, pp. 75-85, Winter 2011.##
M. A. Richards, J. A. Scheer, and W. A. Holm, “Principles of Modern Radar: Basic principles,” vol. 1, Sci. Tech., 2010.##
S. D. Blunt and K. Gerlach, “Adaptive pulse compression via MMSE estimation,” IEEE Transactions on Aerospace and Electronic Systems, vol. 42, no. 2, pp. 572-584, Apr. 2006.##
S. M. Kay, “Fundamentals of Statistical Signal Processing: Estimation Theory,” Upper Saddle River, NJ: Prentice-Hall, , pp. 219-286 and pp. 344-350, 1993.##
N. Levanon, “Creating Sidelobe-Free Range Zone Around Detected Radar Target,” in IEEE 28-th Convention of Electrical and Electronics Engineers, 2014.##
S. D. Blunt, T. Higgins, and K. Gerlach, “Dimensionality reduction techniques for efficient adaptive pulse compression,” IEEE Trans. Aerospace and Electronic Systems, vol. 46, no. 1, pp. 349-362, Jan. 2010.##
L. Kong, M. Yang, and B. Zhao, “Fast implementation of adaptive multi-pulse compression via dimensionality reduction technique,” In 2012 IEEE Radar Conference, 2012.##
B
Y. Yang, L. Li, G. Cui, W Yi, L Kong, and X. Yang, “A modified adaptive multi-pulse compression algorithm for fast implementation,” In 2015 IEEE Radar Conference (RadarCon), May 2015.##
P. M. McCormick, S. D. Blunt, and Thomas Higgins, “A gradient descent implementation of adaptive pulse compression,” in IEEE Radar Conference (RadarConf), 2016.##
Z. Li, Z. Yan, S. Wang, L. Li, and M. Mclinden, “Fast adaptive pulse compression based on matched filter outputs,” IEEE Trans. on Aerospace and Electronic Systems, vol. 51, no. 1, pp. 548-564, 2015.##
T. D. Cuprak and K. E. Wage, “Efficient Doppler-Compensated Reiterative Minimum Mean-Squared-Error Processing,” IEEE Transactions on Aerospace and Electronic Systems, vol. 53, no. 2, pp. 562-574, 2017.##
S. D. Blunt, A. K. Shackelford, K. Gerlach, and K. J. Smith, “Doppler Compensation & Single Pulse Imaging using Adaptive Pulse Compression,” IEEE Transactions on Aerospace and Electronic Systems, vol. 45, pp. 647-659, 2009.##
H. L. Van Trees, “Optimum Array Processing,” New York: Wiley, 2002.##
S. D. Blunt, K. Gerlach, and E. Mokole, “Pulse compression eclipsing repair,” In IEEE Radar Conf, Rome, Italy, 26-30 May 2008.##
K. Gerlach and S. D. Blunt, “Radar pulse compression repair,” IEEE Transactions on Aerospace and Electronic Systems, vol. 43, no. 3, pp. 1188-1195, 2007.##