[1] M. Roel, “Physically Unclonable Functions: Constructions,” Properties and Applications, Ph. D. thesis, Dissertation, University of KU Leuven, 2012.##
[2] H. Handschuh, S. Geert-Jan, and P. Tuyls, “Hardware Intrinsic Security from Physically Unclonable Functions,” Parts of Towards Hardware-Intrinsic Security, Springer Berlin Heidelberg, pp. 39-53, 2010.##
[3] M. Platonov, “SRAM-Based Physical Unclonable Function on an Atmel ATmega Microcontroller,” Master’s thesis, Czech Technical University in Prague, Faculty of Information Technology, 2013.##
[4] V. Van der Leest, G.-J. Schrijen, H. Handschuh, and P. Tuyls, “Hardware Intrinsic Security from D Flip-Flops,” In ACM workshop on scalable trusted computing-STC 2010, New York: ACM, pp. 53–62, 2010.##
[5] J.-L. Zhang, “A Survey on Silicon PUFs and Recent Advances in Ring Oscillator PUFs, Journal Of Computer Science and Technology,” vol. 29, no. 4, pp. 664–678, July 2014. DOI 10.1007/s11390-014-1458-1.##
[6] Y. Lao and K. Parhi, “Reconfigurable architectures for silicon physical unclonable functions,” In IEEE international conference on electro/information technology-EIT 2011, New York: IEEE, pp. 1–7, 2011.##
[7] J. Guajardo, S. S. Kumar, G. Schrijen, and P. Tuyls, “FPGA Intrinsic PUFs and Their Use for IP Protection,” CHES 2007, LNCS 4727, pp. 63–80, 2007.##
[8] N. Beckmann and M. Potkonjak, “Hardware-Based Public-Key Cryptography with Public Physically Unclonable Functions,” In Lecture notes in computer science (LNCS), vol. 5806, International workshop on information hiding-IH 2009, Berlin: Springer, pp. 206–220, 2009.##
[9] L. Bolotny and G. Robins, “Physically Unclonable Function-Based Security and Privacy in RFID Systems,” In IEEE international conference on pervasive computing and communications-PERCOM 2007, New York: IEEE, pp. 211–220, 2007.##
[10] F. Armknecht, R. Maes, A.-R. Sadeghi, B. Sunar and P. Tuyls, “Memory leakage resilient encryption based on physically unclonable functions,” In Lecture notes in computer science (LNCS), vol. 5912, Advances in cryptology-ASIACRYPT 2009, Berlin: Springer, pp. 685–702, 2009.##
[11] Q. Chen, G. Csaba, and P. Lugli, U. Schlichtmann, and U. Ruhrmair, “The bistable ring PUF: a new architecture for strong physical unclonable functions,” In IEEE international symposium on hardware-oriented security and trust-HOST 2011, New York: IEEE, pp. 134–141, 2011.##
[12] A. Maiti and P. Schaumont, “Improved ring oscillator PUF: an FPGA-friendly secure primitive,” Journal of Cryptology, vol. 24, pp. 375–397, 2011.##
[13] A. Maiti and P. Schaumont, “Improving the quality of a physical unclonable function using configurable ring oscillators,” In International conference on field programmable logic and applications-FPL 2009, New York: IEEE, pp. 703–707, 2009.##
[14] A. Maiti, J. Casarona, L. McHale, and P. Schaumont, “A large scale characterization of RO-PUF,” In IEEE international symposium on hardware-oriented security and trust-HOST 2010, New York: IEEE, pp. 94–99, 2010.##
[15] J. Guajardo, et al, “Brand and IP protection with physical unclonable functions,” 2008 IEEE International Symposium on Circuits and Systems, IEEE, 2008.##
[16] J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. Van Dijk, and S. Devadas, “A technique to build a secret key in integrated circuits for identification and authentication applications,” In Proc. Symposium on VLSI Circuits, Digest of Technical Papers, pp.176-179, Jun. 2004.##
[17] D. Lim, J. Lee, B. Gassend, G. E. Suh, M. van Dijk, and S. Devadas, “Extracting secret keys from integrated circuits,” IEEE Trans. Very Large Scale Integr. Syst., vol. 13, no. 10, pp.1200-1205, 2005.##
[18] S. Kardas, M. Akgun, M. S. Kiraz, and H. Demirci, “Cryptanalysis of lightweight mutual authentication and ownership transfer for RFID systems,” In Workshop on lightweight security and privacy: devices, protocols, and applications-LightSec 2011, NewYork: IEEE, pp. 20-25 2011.##
[19] H. Handschuh, G.-J. Schrijen, and P.Tuyls, “Hardware Intrinsic Security from Physically Unclonable Functions,” A.-R. Sadeghi, D. Naccache (eds.), Towards Hardware-Intrinsic Security, Information Security and Cryptography, DOI 10.1007/978-3-642-14452-3_2, pp. 39-53, 2011.##
[20] R. Maes, A.Van Herrewege, and I. Verbauwhede, “ PUFKY: a fully functional PUF-based cryptographic key generator,” In Lecture notes in computer science (LNCS):, Workshop on cryptographic hardware and embedded systems-CHES 2012, Berlin: Springer, vol. 7428, 2012.##
[21] C. Brzuska, M. Fischlin, H. Schröder, and S. Katzenbeisser, “Physically uncloneable functions in the universal composition framework,” In Lecture notes in computer science (LNCS), Advances in cryptology-CRYPTO 2011, Berlin: Springer, vol. 6841, pp. 51–70, 2011.##
[22] E. Barker and J. Kelsey, “Recommendation for random number generation using deterministic random bit generators,” NIST special publication 800-90A, 2012.
http://csrc.nist.gov/publications/nistpubs/800-0A/SP800-90A.pdf.##
[23] G. Swetha, “Temperature variation effects on asynchronous PUF design using FPGAs,” Phd Thesis, University of Toledo, 2014. http://utdr-toledo.edu/theses-dissersions.##
[24] R. Tauhidur, et al., “ARO-PUF: An aging-resistant ring oscillator PUF design,” Proceedings of the
conference on Design, Automation & Test in Europe, European Design and Automation Association, 2014.##
[25] S. Mueelich and M. Bossert, “A New Error Correction Scheme for Physical Unclonable Functions,” IEEE SCC 2017, Hamburg, Germany, 6-9 Feb. 2017.##
[26] F. Ganji, S. Tajik, and J.-P. Seifert, “Fourier Analysis Based Attack against Physically Unclonable Functions,” https://eprint.iacr.org/2017/551.pdf##
[27] T. A. Soroceanu, “Security Analysis of Strong Physical Unclonable Functions,” MSc Thesis, Berlin, 2017.##
[28] S. Tajik, “On the physical security of physically unclonable functions,” MSc thesis, TU Berlin, 2017.##