[1] P. S. Pakhare, S. Krishnan, N. N. Charniya, “Malicious url detection using machine learning and ensemble modeling,” In Computer Networks, Big Data and IoT: Proceedings of ICCBI 2020, pp. 839-850, Springer Singapore, 2020, doi: https://doi.org/10.1007/978-981-16-0965-7_65
[2] C. Hajaj, N. Hason, and A. Dvir, “Less is more: Robust and novel features for malicious domain detection,” Electronics, vol. 11, no. 6, p. 969, 2022, https://doi.org/10.3390/electronics11060969.
[3] S. Kim, J. Kim, and B. B. Kang, “Malicious URL protection based on attackers' habitual behavioral analysis,” Computers & Security, vol. 77, pp. 790-806, 2018, https://doi.org/10.1016/j.cose.2018.01.013.
[4] A. S. Raja, G. Pradeepa, and N. Arulkumar, “Mudhr: Malicious URL detection using heuristic rules based approach,” In AIP Conference Proceedings, vol. 2393, no. 1, p. 020176, AIP Publishing LLC, 2022, https://doi.org/10.1063/5.0074077
[5] R. Madhubala, N. Rajesh, L. Shaheetha, and N. Arulkumar, “Survey on Malicious URL Detection Techniques,” In 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI), pp. 778-781, IEEE, 2022, doi: 10.1109/ICOEI53556.2022.9777221.
[6] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, and S. Venkatraman, “Robust intelligent malware detection using deep learning,” IEEE Access, vol. 7, pp. 46717-46738, 2019, doi:10.1109/ACCESS.2019.2906934.
[7] Y. Liang, Q. Wang, K. Xiong, X. Zheng, Z. Yu, and D. Zeng, “Robust Detection of Malicious URLs With Self-Paced Wide & Deep Learning,” IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 2, pp. 717-730, 2021, doi: 10.1109/TDSC.2021.3121388.
[8] R. Rakesh, S. Muthuraijkumar, L. Sairamesh, M. Vijayalakmi, and A. Kannan, “Detection of URL based attacks using reduced feature set and modified C4. 5 algorithm,” Adv. Nat. Appl. Sci, vol. 9, pp. 304-311, 2015.
[9] F. A. Ghaleb, M. Alsaedi, F. Saeed, J. Ahmad, and M. Alasli, “Cyber Threat Intelligence-Based Malicious URL Detection Model Using Ensemble Learning,” Sensors, vol. 22, no.9, p. 3373, 2022, doi: 10.3390/s22093373.
[10] S. He, B. Li, H. Peng, J. Xin, and E. Zhang, “An effective cost-sensitive XGBoost method for malicious URLs detection in imbalanced dataset,” IEEE Access, vol. 9, pp. 93089-93096, 2021, doi: 10.1109/access.2021.3093094.
[11] R. Patgiri, H. Katari, R. Kumar, and D. Sharma, “Empirical study on malicious URL detection using machine learning,” In International Conference on Distributed Computing and Internet Technology, pp. 380-388, Springer, Cham, 2019, https://doi.org/10.1007/978-3-030-05366-6_31.
[12] J. Chen, Z. Hu, and Z. Qian, “Research on malicious URL detection based on random forest,” In 2022 14th International Conference on Computer Research and Development (ICCRD), pp. 30-36, IEEE, 2022, January, doi: 10.1109/iccrd54409.2022.9730451.
[13] C. Ding, “Automatic detection of malicious urls using fine-tuned classification model,” In 2020 5th International Conference on Information Science, Computer Technology and Transportation (ISCTT), pp. 302-320, IEEE, 2020, doi: 10.1109/ISCTT51595.2020.00060.
[14] R. Vinayakumar, K. P. Soman, and P. Poornachandran, “Evaluating deep learning approaches to characterize and classify malicious URL’s,” Journal of Intelligent & Fuzzy Systems, vol. 34(3), pp. 1333-1343, 2018, DOI:10.3233/JIFS-169429.
[15] J. Yuan, Y. Liu, and L. Yu, “A novel approach for malicious url detection based on the joint model,” Security and Communication Networks, p.4917016, 2021, https://doi.org/10.1155/2021/4917016.
[16] P. L. Indrasiri, M. N. Halgamuge, and A. Mohammad, “Robust Ensemble Machine Learning Model for Filtering Phishing URLs: Expandable Random Gradient Stacked Voting Classifier,” (ERG-SVC). IEEE Access, vol. 9, pp. 150142-150161, 2021, doi: 10.1109/access.2021.3124628.
[17] D. R. Patil, and J. B. Patil, “Malicious URLs detection using decision tree classifiers and majority voting technique,” Cybernetics and Information Technologies, vol. 18, no. 1, pp. 11-29, 2018, doi:10.2478/cait-2018-0002.
[18] D. K. Mondal, B. C. Singh, H. Hu, S. Biswas, Z. Alom, and M. A. Azim, “SeizeMaliciousURL: A novel learning approach to detect malicious URLs,” Journal of Information Security and Applications, vol. 62, 102967, 2021, https://doi.org/10.1016/j.jisa.2021.102967.
[23] X. Lyu, Y. Ding, S. H. Yang, “Safety and security risk assessment in cyber‐physical systems,” IET Cyber‐Physical Systems: Theory & Applications, vol. 4, no. 3, pp. 221-232, 2019, https://doi.org/10.1049/iet-cps.2018.5068.
[24] C. S. Gates, N. Li, H. Peng, B. Sarma, Y. Qi, R. Potharaju, C. Nita-Rotaru, and I. Molloy, “Generating summary risk scores for mobile applications,” IEEE Transactions on dependable and secure computing, vol. 11, no. 3, pp. 238-251, 2014, doi: 10.1109/tdsc.2014.2302293.
[27] M. Deypir, and A. Horri, “Instance based security risk value estimation for Android applications,” Journal of information security and applications, vol. 40, pp. 20-30, 2018, https://doi.org/10.1016/j.jisa.2018.02.002.
[28] M. Deypir, “Entropy-based security risk measurement for Android mobile applications,” Soft Computing,” vol. 23, no. 16, pp. 7303-7319, 2019, https://doi.org/10.1007/s00500-018-3377-5.
[29] A. S. Raja, R. Vinodini, and A. Kavitha, “Lexical features based malicious URL detection using machine learning techniques,” Materials Today: Proceedings, vol. 47, pp. 163-166, 2021, https://doi.org/10.1016/j.matpr.2021.04.041.
[30] M. Kuyama, Y. Kakizaki, R. Sasaki, “Method for detecting a malicious domain by using whois and dns features,” In Proceedings of the Third International Conference on Digital Security and Forensics (DigitalSec2016), Kuala Lumpur, Malaysia, pp. 6–8, 2016.
[31] M. S. I. Mamun, M. A. Rathore, A. H. Lashkari, N. Stakhanova, and A. A. Ghorbani, “Detecting malicious urls using lexical analysis,” In International Conference on Network and System Security, pp. 467-482. Springer, Cham, 2016, doi:10.1007/978-3-319-46298-1_30.
[32] T. Li, G. Kou, and Y. Peng, “Improving malicious URLs detection via feature engineering: Linear and nonlinear space transformation methods,” Information Systems, vol. 91, 101494, 2020, https://doi.org/10.1016/j.is.2020.101494.
[33] G. Palaniappan, S. Sangeetha, B. Rajendran, S. Goyal, and B. S. Bindhumadhava, “Malicious domain detection using machine learning on domain name features, host-based features and web-based features,” Procedia Computer Science, vol. 171, pp. 654-661, 2020, https://doi.org/10.1016/j.procs.2020.04.071.
[34] K. A. Messabi, M. Aldwairi, A. A. Yousif, A. Thoban, and F. Belqasmi, “Malware detection using dns records and domain name features,” In Proceedings of the 2nd International Conference on Future Networks and Distributed Systems, pp. 1-7, 2018, doi:10.1145/3231053.3231082.
[35] W. Bo, Z. B. Fang, L. X. Wei, Z. F. Cheng, Z. X. Hua, “Malicious URLs detection based on a novel optimization algorithm,” IEICE TRANSACTIONS on Information and Systems, vol. 104(4), pp. 513-516, 2021, doi: 10.1587/transinf.2020EDL8147.
[36] J. Yuan, G. Chen, S. Tian, and X. Pei, “Malicious URL detection based on a parallel neural joint model,” IEEE Access, vol. 9, pp. 9464-9472, 2021, doi:10.1109/access.2021.3049625.
[37] S. He, B. Li, H. Peng, J. Xin, and E. Zhang, “An effective cost-sensitive XGBoost method for malicious URLs detection in imbalanced dataset,” IEEE Access, vol. 9, pp. 93089-93096, 2021, doi:10.1109/access.2021.3093094.
[38] S. Kumi, C. Lim, S. G. Lee, “Malicious url detection based on associative classification,” Entropy, vol 23(2), p. 182, 2021, doi: 10.3390/e23020182.
[39] Z. Chen, Y. Liu, C. Chen, M. Lu, and X. Zhang, “Malicious url detection based on improved multilayer recurrent convolutional neural network model,” Security and Communication networks, no. 1, p.9994127, 2021, https://doi.org/10.1155/2021/9994127.
[40] R. Patgiri, A. Biswas, S. Nayak, “deepBF: Malicious URL detection using learned bloom filter and evolutionary deep learning. Computer Communications,” vol. 200, pp. 30-41, 2023, https://doi.org/10.1016/j.comcom.2022.12.027.
[41] Broadcom, “URL Risk Levels,” https://knowledge.broadcom.com/external/article/175589/url-risk-levels.html
[42] Github, “Google Web Risk,” https://github.com/google/webrisk.
[43] M. Deypir, T. Zoughi, “Novel Security Metrics for Identifying Risky Unified Resource Locators (URLs),” Iranian Journal of Science and Technology, Transactions of Electrical Engineering, pp. 1-19, 2024, doi: 10.1007/s40998-023-00690-x.
[44] A.Tharwat, T. Gaber, A. Ibrahim, A. E. Hassanien, “Linear discriminant analysis: A detailed tutorial,” AI communications, vol. 30, no. 2, pp. 169-190, 2017, doi: 10.3233/aic-170729.
[45] Kaggle, “Malicious URL Detection using MLP,” https://www.kaggle.com/code/ashisharya01/malicious-url-detection-using-mlp-99-6-accuracy/data?select=urldata.csv
[46] R. van Rijswijk-Deij, M. Jonker, A. Sperotto, and A. Pras, “A high-performance, scalable infrastructure for large-scale active DNS measurements,” IEEE journal on selected areas in communications, vol. 34, no. 6, pp. 1877-1888, 2016, doi: 10.1109/jsac.2016.2558918.
[46] L. Qu, Y. Pei, “A Comprehensive Review on Discriminant Analysis for Addressing Challenges of Class-Level Limitations, Small Sample Size, and Robustness,” Processes, vol. 12, no. 7, p. 1382, 2024, https://doi.org/10.3390/pr12071382.