[1] T. M. Fernández-Caramés, "From pre-quantum to post-quantum IoT security: A survey on quantum-resistant cryptosystems for the Internet of Things," IEEE Internet of Things Journal, vol. 7, no. 7, pp. 6457-6480, 2019, doi: https://doi.org/10.1109/JIOT.2019.2958788.
[2] S. Kumari, M. Singh, R. Singh, and H. Tewari, "A post-quantum lattice based lightweight authentication and code-based hybrid encryption scheme for IoT devices," Computer Networks, vol. 217, p. 109327, 2022, doi: https://doi.org/10.1016/j.comnet.2022.109327.
[3] H. Cheng, D. Dinu, J. Großschädl, P. B. Rønne, and P. Y. Ryan, "A lightweight implementation of NTRU Prime for the post-quantum internet of things," in Information Security Theory and Practice: 13th IFIP WG 11.2 International Conference, WISTP 2019, Paris, France, December 11–12, 2019, Proceedings 13, 2020: Springer, pp. 103-119, doi: https://doi.org/10.1007/978-3-030-41702-4_7.
[4] M. Schöffel, F. Lauer, C. C. Rheinländer, and N. Wehn, "Secure IoT in the era of quantum computers—Where are the bottlenecks?," Sensors, vol. 22, no. 7, p. 2484, 2022, doi: https://doi.org/10.3390/s22072484.
[5] A. Khalid, S. McCarthy, M. O’Neill, and W. Liu, "Lattice-based cryptography for IoT in a quantum world: Are we ready?," in 2019 IEEE 8th international workshop on advances in sensors and interfaces (IWASI), 2019: IEEE, pp. 194-199, doi: https://doi.org/10.1109/IWASI.2019.8791343.
[6] B. Liu and H. Wu, "Efficient architecture and implementation for NTRUEncrypt system," in 2015 IEEE 58th international Midwest symposium on circuits and systems (MWSCAS), 2015: IEEE, pp. 1-4, doi: https://doi:10.1109/MWSCAS.2015.7282143.
[7] M. Lowy, "Parallel implementation of linear feedback shift registers for low power applications," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 43, no. 6, pp. 458-466, 1996, doi: https://doi: 10.1109/82.502318.
[8] F. Rodriguez, N. Saqib, A. D. Pérez, and C. Koc, "Cryptographic Algorithms on Reconfigurable Hardware," Springer, 2006.
[9] J. L. Imaña Pascual, "LFSR-based bit-serial GF (^ 2m) multipliers using irreducible trinomials," 2021, doi: http://dx.doi.org/10.1109/TC.2020.2980259.
[10] J. L. Imana, P. He, T. Bao, Y. Tu, and J. Xie, "Efficient hardware arithmetic for inverted binary ring-lwe based post-quantum cryptography," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 8, pp. 3297-3307, 2022, doi: http://doi:10.1109/TCSI.2022.3169471.
[11] B. S. Rawal and A. Biswas, "A comprehensive survey of post-quantum cryptography and its implications," Engineering Science & Technology, pp. 256-269, 2024, doi: https://doi.org/10.1145/3569457.
[12] J.-P. Aumasson, Serious cryptography: a practical introduction to modern encryption. No Starch Press, Inc, 2024.
[13] P. He, T. Bao, J. Xie, and M. Amin, "FPGA implementation of compact hardware accelerators for ring-binary-LWE-based post-quantum cryptography," ACM Transactions on Reconfigurable Technology and Systems, vol. 16, no. 3, pp. 1-23, 2023, doi: https://doi.org/10.1145/3569457.
[14] S. Ahmadunnisa and S. E. Mathe, "Multi-LFSR Architectures for BRLWE-Based Post Quantum Cryptography," IEEE Access, 2024, doi: https://doi:10.1109/ACCESS.2024.3426990.
[15] J. Xie, K. Basu, K. Gaj, and U. Guin, "Special session: The recent advance in hardware implementation of post-quantum cryptography," in 2020 IEEE 38th VLSI Test Symposium (VTS), 2020: IEEE, pp. 1-10, doi: https://doi:10.1109/VTS48691.2020.9107585.
[16] S. Ebrahimi, S. Bayat-Sarmadi, and H. Mosanaei-Boorani, "Post-quantum cryptoprocessors optimized for edge and resource-constrained devices in IoT," IEEE Internet of Things Journal, vol. 6, no. 3, pp. 5500-5507, 2019, doi: https://doi:10.1109/JIOT.2019.2903082.
[17] J. Jung, H. Yoo, Y. Lee, and I.-C. Park, "Efficient parallel architecture for linear feedback shift registers," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, no. 11, pp. 1068-1072, 2015.
[18] Y. Tu, P. He, U. Guin, and J. Xie, "Low-Complexity Implementation of Lightweight Ring-LWE based Post-Quantum Cryptography."
[19] Z. Liu, R. Azarderakhsh, H. Kim, and H. Seo, "Efficient software implementation of ring-LWE encryption on IoT processors," IEEE Transactions on Computers, vol. 69, no. 10, pp. 1424-1433, 2017, doi: https://DOI10.1109/TC.2017.2750146.
[20] K. Shahbazi and S.-B. Ko, "Area and power efficient post-quantum cryptosystem for IoT resource-constrained devices," Microprocessors and Microsystems, vol. 84, p. 104280, 2021, doi: https://doi.org/10.1016/j.micpro.2021.104280.
[21] J. Xie, P. He, and W. Wen, "Efficient implementation of finite field arithmetic for binary ring-LWE post-quantum cryptography through a novel lookup-table-like method," in 2021 58th ACM/IEEE Design Automation Conference (DAC), 2021: IEEE, pp. 1279-1284, doi: https://doi:10.1109/TETC.2021.3091982.
[22] J. Xie, P. He, X. Wang, and J. L. Imana, "Efficient Hardware Implementation of Finite Field Arithmetic $ AB+ C $ A B+ C for Binary Ring-LWE Based Post-Quantum Cryptography," IEEE Transactions on Emerging Topics in Computing, vol. 10, no. 2, pp. 1222-1228, 2021, doi: https://doi:10.1109/TETC.2021.3091982.
[23] T. Bao, J. L. Imaña, P. He, and J. Xie, "Work-in-progress: High-performance systolic hardware accelerator for rblwe-based post-quantum cryptography," in 2022 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ ISSS), 2022: IEEE, pp. 5-6.
[24] K. Seyhan, T. N. Nguyen, S. Akleylek, and K. Cengiz, "Lattice-based cryptosystems for the security of resource-constrained IoT devices in post-quantum world: a survey," Cluster Computing, vol. 25, no. 3, pp. 1729-1748, 2022, doi: https://doi.org/10.1007/s10586-021-03380-7.
[25] T. Liu, G. Ramachandran, and R. Jurdak, "Post-quantum cryptography for internet of things: a survey on performance and optimization," arXiv preprint arXiv:2401.17538, 2024, doi: https://doi.org/10.48550/arXiv.2401.17538.
[26] V. Lyubashevsky, C. Peikert, and O. Regev, "On ideal lattices and learning with errors over rings," Journal of the ACM (JACM), vol. 60, no. 6, pp. 1-35, 2013, doi: https://doi.org/10.1007/978-3-642-13190-5_1.
[28] O. Regev, "On lattices, learning with errors, random linear codes, and cryptography," Journal of the ACM (JACM), vol. 56, no. 6, pp. 1-40, 2009, doi: https://doi.org/10.1145/1568318.1568324.
[29] B. J. Lucas et al., "Lightweight hardware implementation of binary ring-LWE PQC accelerator," IEEE Computer Architecture Letters, vol. 21, no. 1, pp. 17-20, 2022, doi: https://doi:10.1109/LCA.2022.3160394.