[1] R. Moir, “Defining Malware: FAQ,” 2009. [Online]. Available: https://technet.microsoft.com/en-us/library/dd632948.aspx
[2] C. C. Elisan, Advanced malware analysis. McGraw Hill Professional, 2015.
[3] AV-TEST - The Independent IT-Security Institute, “Malware Statistics & Trends Report,” 2022. [Online]. Available: https://www.av-test.org/en/statistics/malware/
[4] D. Simpson, “Malware names.” [Online]. Available: https://docs.microsoft.com/en-us/microsoft-365/security/intelligence/malware-naming
[5] D. Gibert, C. Mateu, and J. Planes, “The rise of machine learning for detection and classification of malware: Research developments, trends and challenges,” J. Netw. Comput. Appl., vol. 153, p. 102526, 2020, doi: 10.1016/j.jnca.2019.102526.
[6] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, “Malware images: visualization and automatic classification,” in Proceedings of the 8th international symposium on visualization for cyber security, 2011, pp. 1–7. doi: 10.1145/2016904.2016908.
[7] L. Chen, R. Sahita, J. Parikh, and M. Marino, “STAMINA: Scalable Deep Learning Approach for Malware Classification,” 2020. [Online]. Available: https://www.intel.com/content/dam/www/public/us/en/ai/documents/stamina-scalable-deep-learning-whitepaper.pdf
[8] D. Vasan, M. Alazab, S. Wassan, B. Safaei, and Q. Zheng, “Image-Based malware classification using ensemble of CNN architectures (IMCEC),” Comput. \& Secur., vol. 92, p. 101748, 2020, doi: 10.1016/j.cose.2020.101748.
[9] L. Chen, “Deep transfer learning for static malware classification,” arXiv Prepr. arXiv1812.07606, 2018.
[10] Z. Cui, F. Xue, X. Cai, Y. Cao, G. Wang, and J. Chen, “Detection of malicious code variants based on deep learning,” IEEE Trans. Ind. Informatics, vol. 14, no. 7, pp. 3187–3196, 2018, doi: 10.1109/TII.2018.2822680.
[12] R. Lyda and J. Hamrock, “Using entropy analysis to find encrypted and packed malware,” IEEE Secur. \& Priv., vol. 5, no. 2, pp. 40–45, 2007, doi: 10.1109/MSP.2007.48.
[13] X. Ugarte-Pedrero, I. Santos, B. Sanz, C. Laorden, and P. G. Bringas, “Countering entropy measure attacks on packed software detection,” in 2012 IEEE Consumer Communications and Networking Conference (CCNC), 2012, pp. 164–168. doi: 10.1109/CCNC.2012.6181079.
[14] D.-L. Vu, T.-K. Nguyen, T. V Nguyen, T. N. Nguyen, F. Massacci, and P. H. Phung, “HIT4Mal: Hybrid image transformation for malware classification,” Trans. Emerg. Telecommun. Technol., vol. 31, no. 11, p. e3789, 2020, doi: 10.1002/ett.3789.
[15] J. Fu, J. Xue, Y. Wang, Z. Liu, and C. Shan, “Malware visualization for fine-grained classification,” IEEE Access, vol. 6, pp. 14510–14523, 2018, doi: 10.1109/ACCESS.2018.2805301.
[16] Z. Ren, G. Chen, and W. Lu, “Malware visualization methods based on deep convolution neural networks,” Multimed. Tools Appl., vol. 79, no. 15, pp. 10975–10993, 2020.
[17] J. Kim, J.-Y. Paik, and E.-S. Cho, “Attention-Based Cross-Modal CNN Using Non-Disassembled Files for Malware Classification,” IEEE Access, vol. 11, pp. 22889–22903, 2023, doi: 10.1109/ACCESS.2023.3253770.
[18] K. Shaukat, S. Luo, and V. Varadharajan, “A novel deep learning-based approach for malware detection,” Eng. Appl. Artif. Intell., vol. 122, p. 106030, 2023, doi: 10.1016/j.engappai.2023.106030.
[19] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic representation of the spatial envelope,” Int. J. Comput. Vis., vol. 42, no. 3, pp. 145–175, 2001, doi: 10.1023/A:1011139631724.
[20] SARVAM Team, “Supervised Classification with k-fold Cross Validation on a Multi Family Malware Dataset.” [Online]. Available: https://sarvamblog.blogspot.com/2014/08/supervised-classification-with-k-fold.html
[21] R. Ronen, M. Radu, C. Feuerstein, E. Yom-Tov, and M. Ahmadi, “Microsoft malware classification challenge,” arXiv Prepr. arXiv1802.10135, 2018.
[22] H. Guo, S. Huang, C. Huang, Z. Pan, M. Zhang, and F. Shi, “File entropy signal analysis combined with wavelet decomposition for malware classification,” IEEE Access, vol. 8, pp. 158961–158971, 2020, doi: 10.1109/ACCESS.2020.3020330.
[23] E. Rezende, G. Ruppert, T. Carvalho, F. Ramos, and P. De Geus, “Malicious software classification using transfer learning of resnet-50 deep neural network,” in 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), 2017, pp. 1011–1014. doi: 10.1109/ICMLA.2017.00-19.
[24] S. Yue, “Imbalanced malware images classification: a CNN based approach,” arXiv Prepr. arXiv1708.08042, 2017.
[25] D. Gibert, C. Mateu, J. Planes, and R. Vicens, “Using convolutional neural networks for classification of malware represented as images,” J. Comput. Virol. Hacking Tech., vol. 15, no. 1, pp. 15–28, 2019, doi: 10.1007/s11416-018-0323-0.
[26] H. Naeem, B. Guo, M. R. Naeem, F. Ullah, H. Aldabbas, and M. S. Javed, “Identification of malicious code variants based on image visualization,” Comput. \& Electr. Eng., vol. 76, pp. 225–237, 2019, doi: 10.1016/j.compeleceng.2019.03.015.
[27] D. Vasan, M. Alazab, S. Wassan, H. Naeem, B. Safaei, and Q. Zheng, “IMCFN: Image-based malware classification using fine-tuned convolutional neural network architecture,” Comput. Networks, vol. 171, p. 107138, 2020, doi: 10.1016/j.comnet.2020.107138.
[28] C. Wang, Z. Zhao, F. Wang, and Q. Li, “A novel malware detection and family classification scheme for IoT based on DEAM and DenseNet,” Secur. Commun. Networks, vol. 2021, 2021, doi: 10.1155/2021/6658842.
[29] B. N. Narayanan, O. Djaneye-Boundjou, and T. M. Kebede, “Performance analysis of machine learning and pattern recognition algorithms for malware classification,” in 2016 IEEE National Aerospace and Electronics Conference (NAECON) and Ohio Innovation Summit (OIS), 2016, pp. 338–342. doi: 10.1109/NAECON.2016.7856826.
[30] M. L. Santacroce, D. Koranek, and R. Jha, “Detecting malware code as video with compressed, time-distributed neural networks,” IEEE Access, vol. 8, pp. 132748–132760, 2020, doi: 10.1109/ACCESS.2020.3010706.