مدل تشخیص نفوذ در خانه های هوشمند مبتنی بر تحلیل مؤلفه اصلی و دسته بندی جنگل تصادفی

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار ،دانشگاه گلستان ،گرگان، گرگان، ایران

چکیده

در سال های اخیر، مساله حفظ امنیت خانه های هوشمند که در آن، تعداد زیادی از وسایل برای برقراری ارتباط از اتصالات اینترنت استفاده می کنند به یکی از دغدغه های اصلی در حوزه امنیت شبکه تبدیل شده است. اگرچه تاکنون پژوهش های زیادی در جهت برقراری امنیت خانه های هوشمند انجام شده است، اما با توجه به گستردگی موضوع مورد بحث، اغلب این کارها در مواردی از جمله دقت و سرعت عمل، کارآیی لازم را ندارند. در روش پیشنهادی پس از انجام برخی عملیات پیش پردازش روی مجموعه داده، به کمک تحلیل مؤلفه اصلی (PCA)، زیرمجموعه ای از ویژگی های مجموعه داده که به عنوان مؤثرترین ویژگی ها در تشخیص نفوذ به شمار می آیند برای آماده سازی داده ها جهت دسته بندی انتخاب شده اند که این عمل منجر به افزایش دقت و سرعت عمل دسته بندی می شود. همچنین در مرحله دسته بندی از الگوریتم جنگل تصادفی که یک الگوریتم قدرتمند مبتنی بر یادگیری ماشین است بر روی یک مجموعه داده بسیار جدید اینترنت اشیا، به نام IoTID20 استفاده شده است. رویکرد پیشنهادی عملکرد بالایی برای تشخیص نفوذ با دقت %99.73 و %98.46 برای دسته بندی حملات دودویی و چند کلاسه نشان داده است. مقایسه نتایج روش پیشنهادی با سایر کارهای انجام شده، نشان دهنده برتری روش پیشنهادی در تشخیص حملات چند کلاسه است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Smart Home Intrusion Detection Model based on Principal Component Analysis and Random Forest Classification

نویسنده [English]

  • Aliakbar Tajari Siahmarzkooh
Assistant Professor, Golestan University, Gorgan, Iran
چکیده [English]

In recent years, the issue of maintaining the security of smart homes, where a large number of devices use Internet connections to communicate, has become one of the main concerns in the field of network security. Although a lot of research has been done to establish the security of smart homes, but considering the scope of the topic under discussion, most of these works do not have the necessary efficiency in terms of accuracy and speed of operation. In the proposed method, after performing some pre-processing operations on the dataset, with the help of Principal Component Analysis (PCA), a subset of the features of the dataset are selected to prepare the data for classification, which are the most effective features in intrusion detection. It is considered that this action leads to an increase in the accuracy and speed of the classification action. Also, in the classification stage, the random forest algorithm, which is a powerful algorithm based on machine learning, has been used on a very new dataset of the Internet of Things, called IoTID20. The proposed approach has shown high performance for intrusion detection with an accuracy of 99.73% and 98.46% for the classification of binary and multi-class attacks. Comparing the results of the proposed method with other works, it shows the superiority of the proposed method in detecting multi-class attacks.

کلیدواژه‌ها [English]

  • Smart home
  • Intrusion Detection
  • Principal Component Analysis (PCA)
  • Random Forest Algorithm
  • IoTID20 dataset

Smiley face

[1]     A. Dolan, L. Ray, and S. Majumdar, “Proactively extracting iot device capabilities: An application to smart homes”, Data and applications security and privacy Conference, 2020, DOI:10.1007/978-3-030-49669-2_3.
[2]     H. Tanha, and M. Abbasi, “Identify malicious traffic on IoT infrastructure using neural networks and deep learning”, Electron. Cyber Def, vol. 11, pp. 1-13, 2023, dor: 20.1001.1.23224347.1402.11.2.1.4
[3]     M. Choras, and M. Pawlicki, “Intrusion detection approach based on optimised artificial neural network”, Neurocomputing, vol. 452, pp. 705–715, 2021, DOI:10.1016/j.neucom.2020.07.138.
[4]     M. Mohammadrezaei, “Detecting Fake Accounts on Social networks using Principal Components Analysis and Algorithm Kernel Density Estimation (A case study on the Twitter social network),” Electron. Cyber Def., vol. 9, pp. 109-123, 2021, dor: 20.1001.1.23224347.1400.9.3.9.0
[5]     K. Keerthi Vasan, and B. Surendiran, “Dimensionality reduction using Principal Component Analysis for network intrusion detection”, Perspect. Sci., vol. 8, pp. 510-512, 2016, DOI:10.1016/j.pisc.2016.05.010.
[6]     F. B. Islam, R. Akter, D.S. Kim, and J.M. Lee, “Deep learning based network intrusion detection for industrial internet of things”, vol. 8, pp. 418–421, 2020,journal-home.s3.ap-northeast-2.amazonaws.com/site/2020kics/presentation/0669.pdf.
[7]     M.A. Jabbar, R. Aluvalu, and S.S.S Reddy, “Cluster based ensemble classification for intrusion detection system”, Proceedings of the 9th international conference on machine learning and computing, 2017, DOI:10.1145/3055635.3056595.
[8]     D. Gaikwad, and R.C. Thool, “Intrusion detection system using bagging ensemble method of machine learning”, international conference on computing communication control and automation, 2015, DOI: 10.1109/ICCUBEA.2015.61.
[9]     M.P. Kantipudi, R. Aluvalu, and S. Velamuri, “An intelligent approach of intrusion detection in mobile crowd sourcing systems in the context of iot based smart city”, Smart Science, vol. 11, pp. 234–240, 2022, DOI:10.1080/23080477.2022.2117889.
[10]     M. Wo´zniak, A. Zielonka, A. Sikora, M.J. Piran, and A. Alamri, “6g-enabled iot home environment control using fuzzy rules”, IEEE INTERNET THINGS, vol. 8, pp.5442–5452,2020, DOI: 10.1109/JIOT.2020.3044940.
[11]     K. S. Kiran, R. K. Devisetty, N. P. Kalyan, K. Mukundini, and R. Karthi, “Building a intrusion detection system for IoT environment using machine learning techniques”, Procedia Comput. Sci., vol. 171, pp.2372-2379,2020, DOI:10.1016/j.procs.2020.04.257.
[12]     T. Gaber, A. El-Ghamry, and A. E. Hassanien, “Injection attack detection using machine learning for smart IoT applications”, Phys. Commun, vol. 52, pp. 101685-101695, 2022, DOI:10.1016/j.phycom.2022.101685.
[13]     A. Sarwar, S. Hasan, W. U. Khan, S. Ahmed, and S. N. K. Marwat, “Design of an Advance Intrusion Detection System for IoT Networks”, 2nd International Conference on Artificial Intelligence (ICAI), 2022, DOI: 10.1109/ICAI55435.2022.9773747.
[14]     M. Bagaa, T. Taleb, J. B. Bernabe, and A. Skarmeta, “A machine learning security framework for iot systems”, IEEE Access, vol. 8, pp. 114066- 114077, 2020, DOI: 10.1109/ACCESS.2020.2996214.
[15]     N. Moustafa, and J. Slay, “Unsw-nb15: A comprehensive data set for network intrusion etection systems (unsw-nb15 network data set)”, military communications and information systems conference (MilCIS), 2015, DOI: 10.1109/MilCIS.2015.7348942.
[16]     I. Ullah, and Q. Mahmoud, “A scheme for generating a dataset for anomalous activity detection in iot networks”, Canadian conference on AI, 2020, DOI:10.1007/978-3-030-47358-7_52.
[17]     P. Maniriho, E. Niyigaba, Z. Bizimana, V. Twiringiyimana, L.J. Mahoro, L. J, and T. Ahmad, “Anomaly-based intrusion detection approach for iot networks using machine learning”, international conference on computer engineering, network, and intelligent multimedia (CENIM), 2020, DOI: 10.1109/CENIM51130.2020.9297958
[18]     R. Qaddoura, A.M. Al-Zoubi, I. Almomani, and H. Faris, “A multi-stage classification approach for iot intrusion detection based on clustering with oversampling”, Appl. Sci., vol. 11, pp. 3022, 2021,.mdpi .com /2076 -3417 /11 /7 /3022.
[19]     A. Farah, “Cross dataset evaluation for IoT network intrusion detection” (Ph.D. thesis), 2020.
[20]     P. Kumar, G.P. Gupta, R. Tripathi, S. Garg, and M.M. Hassan, “DLTIF: Deep learning-driven cyber threat intelligence modeling and identification framework in IoT-enabled maritime transportation systems”, IEEE Trans. Intell. Transp. Syst., vol. 24, pp. 1–10, 2021, DOI:10.1109/tits.2021..3122368.
 
دوره 12، شماره 2 - شماره پیاپی 46
شماره پیا پی 46 تابستان 1403
شهریور 1403
  • تاریخ دریافت: 15 خرداد 1403
  • تاریخ بازنگری: 06 مرداد 1403
  • تاریخ پذیرش: 23 مرداد 1403
  • تاریخ انتشار: 10 شهریور 1403