[1] A. Dolan, L. Ray, and S. Majumdar, “Proactively extracting iot device capabilities: An application to smart homes”, Data and applications security and privacy Conference, 2020, DOI:10.1007/978-3-030-49669-2_3.
[2] H. Tanha, and M. Abbasi, “Identify malicious traffic on IoT infrastructure using neural networks and deep learning”, Electron. Cyber Def, vol. 11, no.2. pp. 1-13, 2023,(in pershian).dor: https://dor.isc.ac/dor/20.1001.1.23224347.1402.11.2.1.4
[3] M. Choras, and M. Pawlicki, “Intrusion detection approach based on optimised artificial neural network”, Neurocomputing, vol. 452, pp. 705–715, 2021, DOI:10.1016/j.neucom.2020.07.138.
[4] M. Mohammadrezaei, “Detecting Fake Accounts on Social networks using Principal Components Analysis and Algorithm Kernel Density Estimation (A case study on the Twitter social network),” Electron. Cyber Def., vol. 9, no.3 pp. 109-123, 2021,(in pershian) dor: 20.1001.1.23224347.1400.9.3.9.0
[5] K. Keerthi Vasan, and B. Surendiran, “Dimensionality reduction using Principal Component Analysis for network intrusion detection”, Perspect. Sci., vol. 8, pp. 510-512, 2016, DOI:10.1016/j.pisc.2016.05.010.
[6] F. B. Islam, R. Akter, D.S. Kim, and J.M. Lee, “Deep learning based network intrusion detection for industrial internet of things”, vol. 8, pp. 418–421, 2020,journal-home.s3.ap-northeast-2.amazonaws.com/site/2020kics/presentation/0669.pdf.
[7] M.A. Jabbar, R. Aluvalu, and S.S.S Reddy, “Cluster based ensemble classification for intrusion detection system”, Proceedings of the 9th international conference on machine learning and computing, 2017, DOI:10.1145/3055635.3056595.
[8] D. Gaikwad, and R.C. Thool, “Intrusion detection system using bagging ensemble method of machine learning”, international conference on computing communication control and automation, 2015, DOI: 10.1109/ICCUBEA.2015.61.
[9] M.P. Kantipudi, R. Aluvalu, and S. Velamuri, “An intelligent approach of intrusion detection in mobile crowd sourcing systems in the context of iot based smart city”, Smart Science, vol. 11, pp. 234–240, 2022, DOI:10.1080/23080477.2022.2117889.
[10] M. Wo´zniak, A. Zielonka, A. Sikora, M.J. Piran, and A. Alamri, “6g-enabled iot home environment control using fuzzy rules”, IEEE INTERNET THINGS, vol. 8, pp.5442–5452,2020, DOI: 10.1109/JIOT.2020.3044940.
[11] K. S. Kiran, R. K. Devisetty, N. P. Kalyan, K. Mukundini, and R. Karthi, “Building a intrusion detection system for IoT environment using machine learning techniques”, Procedia Comput. Sci., vol. 171, pp.2372-2379,2020, DOI:10.1016/j.procs.2020.04.257.
[12] T. Gaber, A. El-Ghamry, and A. E. Hassanien, “Injection attack detection using machine learning for smart IoT applications”, Phys. Commun, vol. 52, pp. 101685-101695, 2022, DOI:10.1016/j.phycom.2022.101685.
[13] A. Sarwar, S. Hasan, W. U. Khan, S. Ahmed, and S. N. K. Marwat, “Design of an Advance Intrusion Detection System for IoT Networks”, 2nd International Conference on Artificial Intelligence (ICAI), 2022, DOI: 10.1109/ICAI55435.2022.9773747.
[14] M. Bagaa, T. Taleb, J. B. Bernabe, and A. Skarmeta, “A machine learning security framework for iot systems”, IEEE Access, vol. 8, pp. 114066- 114077, 2020, DOI: 10.1109/ACCESS.2020.2996214.
[15] N. Moustafa, and J. Slay, “Unsw-nb15: A comprehensive data set for network intrusion etection systems (unsw-nb15 network data set)”, military communications and information systems conference (MilCIS), 2015, DOI: 10.1109/MilCIS.2015.7348942.
[16] I. Ullah, and Q. Mahmoud, “A scheme for generating a dataset for anomalous activity detection in iot networks”, Canadian conference on AI, 2020, DOI:10.1007/978-3-030-47358-7_52.
[17] P. Maniriho, E. Niyigaba, Z. Bizimana, V. Twiringiyimana, L.J. Mahoro, L. J, and T. Ahmad, “Anomaly-based intrusion detection approach for iot networks using machine learning”, international conference on computer engineering, network, and intelligent multimedia (CENIM), 2020, DOI: 10.1109/CENIM51130.2020.9297958
[18] R. Qaddoura, A.M. Al-Zoubi, I. Almomani, and H. Faris, “A multi-stage classification approach for iot intrusion detection based on clustering with oversampling”, Appl. Sci., vol. 11, pp. 3022, 2021,.mdpi .com /2076 -3417 /11 /7 /3022.
[19] A. Farah, “Cross dataset evaluation for IoT network intrusion detection” (Ph.D. thesis), 2020.
[20] P. Kumar, G.P. Gupta, R. Tripathi, S. Garg, and M.M. Hassan, “DLTIF: Deep learning-driven cyber threat intelligence modeling and identification framework in IoT-enabled maritime transportation systems”, IEEE Trans. Intell. Transp. Syst., vol. 24, pp. 1–10, 2021, DOI:10.1109/tits.2021..3122368