[1] A. Dolan, L. Ray, and S. Majumdar, “Proactively extracting iot device capabilities: An application to smart homes”, Data and applications security and privacy Conference, 2020, DOI:10.1007/978-3-030-49669-2_3.
[2] H. Tanha, and M. Abbasi, “Identify malicious traffic on IoT infrastructure using neural networks and deep learning”, Electron. Cyber Def, vol. 11, pp. 1-13, 2023, dor: 20.1001.1.23224347.1402.11.2.1.4
[3] M. Choras, and M. Pawlicki, “Intrusion detection approach based on optimised artificial neural network”, Neurocomputing, vol. 452, pp. 705–715, 2021, DOI:10.1016/j.neucom.2020.07.138.
[4] M. Mohammadrezaei, “Detecting Fake Accounts on Social networks using Principal Components Analysis and Algorithm Kernel Density Estimation (A case study on the Twitter social network),” Electron. Cyber Def., vol. 9, pp. 109-123, 2021, dor: 20.1001.1.23224347.1400.9.3.9.0
[5] K. Keerthi Vasan, and B. Surendiran, “Dimensionality reduction using Principal Component Analysis for network intrusion detection”, Perspect. Sci., vol. 8, pp. 510-512, 2016, DOI:10.1016/j.pisc.2016.05.010.
[6] F. B. Islam, R. Akter, D.S. Kim, and J.M. Lee, “Deep learning based network intrusion detection for industrial internet of things”, vol. 8, pp. 418–421, 2020,journal-home.s3.ap-northeast-2.amazonaws.com/site/2020kics/presentation/0669.pdf.
[7] M.A. Jabbar, R. Aluvalu, and S.S.S Reddy, “Cluster based ensemble classification for intrusion detection system”, Proceedings of the 9th international conference on machine learning and computing, 2017, DOI:10.1145/3055635.3056595.
[8] D. Gaikwad, and R.C. Thool, “Intrusion detection system using bagging ensemble method of machine learning”, international conference on computing communication control and automation, 2015, DOI: 10.1109/ICCUBEA.2015.61.
[9] M.P. Kantipudi, R. Aluvalu, and S. Velamuri, “An intelligent approach of intrusion detection in mobile crowd sourcing systems in the context of iot based smart city”, Smart Science, vol. 11, pp. 234–240, 2022, DOI:10.1080/23080477.2022.2117889.
[10] M. Wo´zniak, A. Zielonka, A. Sikora, M.J. Piran, and A. Alamri, “6g-enabled iot home environment control using fuzzy rules”, IEEE INTERNET THINGS, vol. 8, pp.5442–5452,2020, DOI: 10.1109/JIOT.2020.3044940.
[11] K. S. Kiran, R. K. Devisetty, N. P. Kalyan, K. Mukundini, and R. Karthi, “Building a intrusion detection system for IoT environment using machine learning techniques”, Procedia Comput. Sci., vol. 171, pp.2372-2379,2020, DOI:10.1016/j.procs.2020.04.257.
[12] T. Gaber, A. El-Ghamry, and A. E. Hassanien, “Injection attack detection using machine learning for smart IoT applications”, Phys. Commun, vol. 52, pp. 101685-101695, 2022, DOI:10.1016/j.phycom.2022.101685.
[13] A. Sarwar, S. Hasan, W. U. Khan, S. Ahmed, and S. N. K. Marwat, “Design of an Advance Intrusion Detection System for IoT Networks”, 2nd International Conference on Artificial Intelligence (ICAI), 2022, DOI: 10.1109/ICAI55435.2022.9773747.
[14] M. Bagaa, T. Taleb, J. B. Bernabe, and A. Skarmeta, “A machine learning security framework for iot systems”, IEEE Access, vol. 8, pp. 114066- 114077, 2020, DOI: 10.1109/ACCESS.2020.2996214.
[15] N. Moustafa, and J. Slay, “Unsw-nb15: A comprehensive data set for network intrusion etection systems (unsw-nb15 network data set)”, military communications and information systems conference (MilCIS), 2015, DOI: 10.1109/MilCIS.2015.7348942.
[16] I. Ullah, and Q. Mahmoud, “A scheme for generating a dataset for anomalous activity detection in iot networks”, Canadian conference on AI, 2020, DOI:10.1007/978-3-030-47358-7_52.
[17] P. Maniriho, E. Niyigaba, Z. Bizimana, V. Twiringiyimana, L.J. Mahoro, L. J, and T. Ahmad, “Anomaly-based intrusion detection approach for iot networks using machine learning”, international conference on computer engineering, network, and intelligent multimedia (CENIM), 2020, DOI: 10.1109/CENIM51130.2020.9297958
[18] R. Qaddoura, A.M. Al-Zoubi, I. Almomani, and H. Faris, “A multi-stage classification approach for iot intrusion detection based on clustering with oversampling”, Appl. Sci., vol. 11, pp. 3022, 2021,.mdpi .com /2076 -3417 /11 /7 /3022.
[19] A. Farah, “Cross dataset evaluation for IoT network intrusion detection” (Ph.D. thesis), 2020.
[20] P. Kumar, G.P. Gupta, R. Tripathi, S. Garg, and M.M. Hassan, “DLTIF: Deep learning-driven cyber threat intelligence modeling and identification framework in IoT-enabled maritime transportation systems”, IEEE Trans. Intell. Transp. Syst., vol. 24, pp. 1–10, 2021, DOI:10.1109/tits.2021..3122368.