شکل تعمیم‌یافته‌ پروتکل توزیع کلید کوانتومی BB84 با n پایه‌ قطبش و احتمال‌های نابرابر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 نخبه‌ی وظیفه، دانشگاه و پژوهشگاه عالی دفاع ملی و تحقیقات راهبردی

2 استادیار دانشگاه و پژوهشگاه عالی دفاع ملی و تحقیقات راهبردی

چکیده

توزیع کلید کوانتومی مسأله‌ تولید و تبادل کلید بین طرفین رمزنگاری را با امنیت نامشروط که با اصول و پدیده‌های مکانیک کوانتومی تضمین می‌شود، حل می‌کند. در پیشینه‌ چهل‌ساله‌ رمزنگاری کوانتومی، پروتکل‌های توزیع کلید کوانتومی گوناگونی ابداع شده‌اند که معروف‌ترین آنها BB84 است و برخی دیگر همچون پروتکل‌های شش‌حالته و اردهالی-چائو-لو با اعمال تغییراتی روی آن به‌وجود آمده‌اند. در این مقاله، شکل کلی‌تری از BB84 با به‌کارگیری  حالت قطبش که  جفت متعامد از حالت‌های قطبش و  پایه‌ قطبش را به‌وجود می‌آورند، ارائه می‌شود. افزون بر آن، فرض می‌شود پایه‌های قطبش متمایز با احتمال‌های لزوماً نابرابر انتخاب می‌شوند. سپس، با مطالعه و تحلیل پروتکل توزیع کلید کوانتومی جدید و دو حالت خاص آن از دیدگاه نظریه‌ احتمال، این پروتکل‌ها با پروتکل‌های BB84، شش‌حالته و اردهالی-چائو-لو مقایسه و سرانجام، با ساخت چهار مثال عددی گوناگون، نتایج به‌دست‌آمده از تحلیل‌ها تأیید می‌شوند. برتری پروتکل توزیع کلید کوانتومی جدید در مقایسه با پروتکل‌های BB84، شش‌حالته و اردهالی-چائو-لو انعطاف‌پذیری بالای آن در انتخاب تعداد حالت‌های قطبش و چگونگی تخصیص احتمال روی انتخاب پایه‌های قطبش است. این برتری سبب می‌شود که با تحلیل پروتکل جدید و دو حالت خاص آن از دیدگاه نظریه‌ احتمال، بتوان با آگاهی بیشتری پروتکل توزیع کلید کوانتومی مناسب را برای تحقق یک هدف مشخص انتخاب کرد و از مزایای  آن بهره‌مند شد.

کلیدواژه‌ها


عنوان مقاله [English]

Generalized Version of the BB84 QKD Protocol with n Polarization Bases and Unequal Probabilities

نویسندگان [English]

  • A. Aghanis 1
  • N. Doustimotlagh 2
1 -
2 -
چکیده [English]

Quantum key distribution (QKD) solves the problem of key generation and exchange between           cryptography parties with unconditional security guaranteed by the principles and phenomena of quantum mechanics. In the 40-year old history of quantum cryptography, several QKD protocols have been invented of which, the BB84 protocol is the most famous one, and some others such as the six-state and                 Ardehali-Chau-Lo protocols have been created by making some variations of it. In this paper, a more     general version of BB84 using 2n polarization states which create n orthogonal pairs of polarization states and n polarization bases is presented. In addition, it is assumed that distinct polarization bases are chosen with necessarily unequal probabilities. Then by studying and analyzing the new QKD protocol and its two special cases using the probability theory, they are compared with the BB84, six-state and Ardehali-Chau-Lo protocols and finally, the results are supported and confirmed by constructing four various numerical examples. The advantage of the new QKD protocol in comparison to the BB84, the six-state and             Ardehali-Chau-Lo protocols is its high flexibility in choosing the number of polarization states and the manner of probability allocation on choosing the polarization bases. By analyzing the new protocol and its two special cases using the probability theory, this advantage causes better application of knowledge for a suitable QKD protocol selection in order to realize a certain goal and exploit its technological advantages.
 

کلیدواژه‌ها [English]

  • BB84 protocol
  • photon
  • polarization basis
  • non-uniform 2n-state protocol
[1]   C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175-179, 1984.##
[2]   S. Wiesner, “Conjugate coding,” ACM SIGACT News, vol. 15, no. 1, pp. 78-88, 1983.##
[3]   N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. of Mod. Phys., vol. 74, no. 1, pp.        145-195, 2002.##
[4]   A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett., vol. 67, no. 6, pp. 661-663, 1991.##
[5]   C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett., vol. 68, no. 21, pp. 3121-3124, 1992.##
[6]   L. Goldenberg and L. Vaidman, “Quantum cryptography based on orthogonal states,” Phys. Rev. Lett., vol. 75, no. 7, pp. 1239-1243, 1995.##
[7]   D. Bruß, “Optimal eavesdropping in quantum cryptography with six states,” Phys. Rev. Lett., vol. 81, no. 14, pp.       3018-3021, 1998.##
[8]   H. Bechmann-Pasquinnuci and N. Gisin, “Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography,” Phys. Rev. A, vol. 59, no. 6, pp. 4238-4248, 1999.##
[9]   M. Ardehali, H. F. Chau, and H. -K. Lo, “Efficient quantum key distribution,” arXiv:quant-ph/9803007v4, 1999.##
[10]              V. Scarani, A. Acin, G. Ribordy, and N. Gisin, “Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations,” Phys. Rev. Lett., vol. 92, no. 5, p. 057901, 2004.##
[11]              M. Lucamarini and S. Mancini, “Secure deterministic communication without entanglement,” Phys. Rev. Lett., vol. 94, no. 14, p. 140501, 2005.##
[12]              S. V. Kartalopoulos, “Link-layer vulnerabilities of quantum cryptography,” Proceedings of the SPIE International Congress on Optics and Optoelectronics, pp. 111-118, 2005.##
[13]              S. V. Kartalopoulos, “K08: A generalized BB84/B92 protocol in quantum cryptography,” Secur. Comm. Networks, vol. 2, pp. 686-693, 2008.##
[14]              E. E. Hernandez Serna, “Quantum key distribution protocol with private-public key,” arXiv:0908.2146v4 [quant-ph], 2012.##
[15]              E. E. Hernandez Serna, “Quantum key distribution from a random seed,” arXiv:1311.1582 [quant-ph], 2013.##
[16]              S. M. Hosseini, S. Janbaz, M. Davoudi Darareh, and A. Zaghian, “A new approach for estimating the rate of emission in quantum bit exchange systems using binomial distribution,” Journal of Electronic & Cyber Defense, vol. 7, no. 1, pp. 105-112, 2019. (In Persian)##
دوره 9، شماره 1 - شماره پیاپی 33
شماره پیاپی 33، فصلنامه بهار
اردیبهشت 1400
صفحه 125-136
  • تاریخ دریافت: 14 اردیبهشت 1399
  • تاریخ بازنگری: 08 مرداد 1399
  • تاریخ پذیرش: 05 آذر 1399
  • تاریخ انتشار: 01 اردیبهشت 1400