یک طرح احراز هویت امن سه عامله برای شبکه‌های حسگر بی‌سیم سلامت الکترونیک مبتنی بر خم بیضوی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد رایانش امن، گروه کامپیوتر، دانشگاه شاهد، تهران، ایران،

2 دانشگاه شاهد

3 گروه مخابرات دانشگاه علوم تحقیقات

4 گروه کامپیوتر دانشگاه قم

چکیده

شبکه‌های بی‌سیم بدن شامل بسیاری گره کوچک است که در بدن بیمار یا اطراف آن کاشته می‌شود. این گره‌های حسگر می‌توانند داده‌های پزشکی را از بیمار جمع‌آوری کرده و این اطلاعات ارزشمند را به یک نمایشگر داده یا یک دستیار دیجیتال شخصی انتقال دهند. سپس، ارائه‌دهندگان خدمات سلامت می‌توانند از طریق مجوز به این اطلاعات دسترسی پیدا کنند. داده‌های پزشکی اغلب شخصی و خصوصی است و محرمانه بودن اطلاعات و حفظ حریم خصوصی کاربران از نگرانی‌های اصلی این سامانه‌ها است. بنابراین افزایش تأمین امنیت داده‌های خدمات سلامت  از اهمیت حیاتی برخوردار است. یکی از عوامل مهم ایجاد امنیت در شبکه‌های سلامت الکترونیک، پروتکل‌های احراز هویت می‌باشند که به طرفین ارتباطات این امکان را می‌دهد تا از هویت یکدیگر اطمینان پیدا کنند و بتوانند خود را به‌طرف دیگر بشناسانند. اخیراً دراین‌ارتباط، چالا و همکارانش [1] یک پروتکل احراز هویت و توافق کلید سه عامله مبتنی بر خم بیضوی را برای شبکه‌های حسگر بی‌سیم سلامت ارائه داده‌اند. در این مقاله، ما چند ضعف امنیتی مانند حمله دسترسی مجاز داخلی و عدم امنیت پیشرو و قابل‌ردیابی بودن کاربر را در طرح  چالا بیان می‌کنیم و سپس یک طرح امن احراز هویت سه عامله برای شبکه‌های حسگر بی‌سیم سلامت پیشنهاد می‌کنیم. در ادامه ویژگی‌های امنیتی طرح خود را بررسی و با کمک ابزار پرووریف امنیت آن را به‌طور صوری  بررسی می‌کنیم. تحلیل امنیتی ارائه‌شده و مقایسه‌های امنیتی و کارایی بیان‌شده با طرح‌های مرتبط، بیان می‌کنند که طرح پیشنهادی یک طرح احراز هویت امن کارا برای شبکه‌های حسگر بی‌سیم سلامت است.

کلیدواژه‌ها


[1]     S. Challa, A. K. Das, V. Odelu, N. Kumar, S. Kumari, M. K. Khan, and A. V. Vasilakos, “An efficient   ECC-based provably secure three-factor user authentication and key agreement protocol for wireless healthcare sensor networks,” Computers & Electrical Engineering, vol. 69, pp. 534-554, 2018.##

[2]     C.-H. Liu and Y.-F. Chung, “Secure user authentication scheme for wireless healthcare sensor networks,” Computers & Electrical Engineering, vol. 59, pp. 250-261, 2017.##

[3]     Q. Jiang, M. K. Khan, X. Lu, J. Ma, and D. He, “A privacy preserving three-factor authentication protocol for e-Health clouds,” The Journal of Supercomputing, vol. 72, no. 10, pp. 3826-3849, 2016.##

[4]     M. U. Aslam, A. Derhab, K. Saleem, H. Abbas, M. Orgun, W. Iqbal, and B. Aslam, “A survey of authentication schemes in telecare medicine information systems,” Journal of medical systems, vol. 41, no. 1, p. 14, 2017.##

[5]     J. Lee, S. Ryu, and K. Yoo, “Fingerprint-based remote user authentication scheme using smart cards,” Electronics Letters, vol. 38, no. 12, pp. 554-555, 2002.##

[6]     C.-H. Lin and Y.-Y. Lai, “A flexible biometrics remote user authentication scheme,” Computer Standards & Interfaces, vol. 27, no. 1, pp. 19-23, 2004.##

[7]     W. Ku, S. Chang, and M. Chiang, “Further cryptanalysis of fingerprint-based remote user authentication scheme using smartcards,” Electronics Letters, vol. 41, no. 5, pp. 240-241, 2005.##

[8]     M. K. Khan, and J. Zhang, “Improving the security of ‘a flexible biometrics remote user authentication scheme,” Computer Standards & Interfaces, vol. 29, no. 1, pp. 82-85, 2007.##

[9]     H. S. Rhee, J. O. Kwon, and D. H. Lee, “A remote user authentication scheme without using smart cards,” Computer Standards & Interfaces, vol. 31, no. 1, pp. 6-13, 2009.##

[10]   H.-S. Kim, S.-W. Lee, and K.-Y. Yoo, “ID-based password authentication scheme using smart cards and fingerprints,” ACM SIGOPS Operating Systems Review, vol. 37, no. 4, pp. 32-41, 2003.##

[11]   M. Scott, “Cryptanalysis of an ID-based password authentication scheme using smart cards and fingerprints,” ACM SIGOPS Operating Systems Review, vol. 38, no. 2, pp. 73-75, 2004.##

[12]   C. L. Chen, C. C. Lee, and C. Y. Hsu, “Mobile device integration of a fingerprint biometric remote authentication scheme,” International Journal of Communication Systems, vol. 25, no. 5, pp. 585-597, 2012.##

[13]   M. K. Khan, S. Kumari, and M. K. Gupta, “More efficient key-hash based fingerprint remote authentication scheme using mobile device,” Computing, vol. 96, no. 9, pp. 793-816, 2014.##

[14]   E.-J. Yoon, and K.-Y. Yoo, “Robust biometrics-based multi-server authentication with key agreement scheme for smart cards on elliptic curve cryptosystem,” The Journal of supercomputing, vol. 63, no. 1, pp. 235-255, 2013.##

[15]   C.-I. Fan, and Y.-H. Lin, “Provably secure remote truly three-factor authentication scheme with privacy protection on biometrics,” IEEE Transactions on Information Forensics and Security, vol. 4, no. 4, pp. 933-945, 2009.##

[16]   F. Wu, L. Xu, S. Kumari, and X. Li, “A novel and provably secure biometrics-based three-factor remote authentication scheme for mobile client–server networks,” Computers & Electrical Engineering, vol. 45, pp. 274-285, 2015.##

[17]   A. Irshad, and S. A. Chaudhry, “Comments on “A privacy preserving three-factor authentication protocol for e-health clouds”,” The Journal of Supercomputing, vol. 73, no. 4, pp. 1504-1508, 2017.##

[18]   Z. Liu, H. Seo, J. Großschädl, and H. Kim, “Efficient implementation of NIST-compliant elliptic curve cryptography for 8-bit AVR-based sensor nodes,” IEEE Transactions on Information Forensics and Security, vol. 11, no. 7, pp. 1385-1397, 2016.##

[19]   M. Abdorasoul, R. Saed, and R. Alireza, “A New Elliptic Curve Based Electronic Voting Protocol,” Journal Of Electronical & Cyber Defence, vol. 5, no. 2, pp. 67-74, 2017)In Persian(##

[20]   M. Kompara, S. H. Islam, and M. Hölbl, “A robust and efficient mutual authentication and key agreement scheme with untraceability for WBANs,” Computer Networks, vol. 148, pp. 196-213, 2019.##

[21]   A. Gupta, M. Tripathi, T. J. Shaikh, and A. Sharma, “A lightweight anonymous user authentication and key establishment scheme for wearable devices,” Computer Networks, vol. 149, pp. 29-42, 2019.##

[22]   T.-Y. Chen, C.-C. Lee, M.-S. Hwang, and J.-K. Jan, “Towards secure and efficient user authentication scheme using smart card for multi-server environments,” The Journal of Supercomputing, vol. 66, no. 2, pp. 1008-1032, 2013.## 

 [23]  H. Arshad, and M. Nikooghadam, “Three-factor anonymous authentication and key agreement scheme for telecare medicine information systems,” Journal of medical systems, vol. 38, no. 12, pp. 136, 2014.##

[24]   H. Xiong, and Z. Qin, “Revocable and scalable certificateless remote authentication protocol with anonymity for wireless body area networks,” IEEE transactions on information forensics and security, vol. 10, no. 7, pp. 1442-1455, 2015.##

 [25]  S. Ji, Z. Gui, T. Zhou, H. Yan, and J. Shen, “An Efficient and Certificateless Conditional Privacy-Preserving Authentication Scheme for Wireless Body Area Networks Big Data Services,” IEEE Access, vol. 6, pp. 69603-69611, 2018.##

[26]   B. Blanchet, B. Smyth, and V. Cheval, “ProVerif 1.93: Automatic cryptographic protocol verifier, user manual and tutorial,” Internet][cited June 2016], Available from: https://www. bensmyth. com/publications/2010-ProVerif-manualversion-1.93, 2016.##

[27]   B. Blanchet, "Automatic verification of security protocols in the symbolic model: The verifier proverif," Foundations of Security Analysis and Design VII, pp. 54-87: Springer, 2014.##

[28]   C. Cao, Y. Zuo, and F. Zhang, "Research on comprehensive performance simulation of communication IP network based on OPNET." pp. 195-197.##

[29]   C. Zhu, O. W. Yang, J. Aweya, M. Ouellette, and D. Y. Montuno, “A comparison of active queue management algorithms using the OPNET Modeler,” IEEE Communications Magazine, vol. 40, no. 6, pp. 158-167, 2002.##

[30]   K. Salah, P. Calyam, and M. Buhari, “Assessing readiness of IP networks to support desktop videoconferencing using OPNET,” Journal of Network and Computer Applications, vol. 31, no. 4, pp. 921-943, 2008.##