جایگذاری بهینه دوربین‌ها باهدف افزایش پوشش تصویری به کمک الگوریتم ژنتیک و جستجوی هارمونی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی کامپیوتر، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران

2 استادیار، گروه مهندسی کامپیوتر، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران

چکیده

سامانه دوربین‌های مداربسته در انواع برنامه‌های کاربردی مانند نظارت بر ترافیک، جلوگیری از جرم و جنایت و اطمینان بخشی به ایمنی اماکن عمومی مورد استفاده قرار می‌گیرد. ازاین‌رو، پوشش ناحیه‌ای دوربین‌های مداربسته برای افزایش امنیت و کاهش هزینه، از بحث‌های چالش‌برانگیز در این زمینه می‌باشد. در روش‌های معمول برای جایگذاری دوربین‌ها اغلب از روش‌های طراحی و آزمون‌وخطا استفاده می‌شود که این روش نیازمند صرف زمان بیشتری بوده و همچنین تعیین مکان بهینه دوربین‌ها میسر نمی‌شود. ازاین‌رو، در این مقاله یک روش جدید برای جایگذاری بهینه دوربین‌ها بر اساس گرافیک رایانه­ای و الگوریتم ژنتیک و جستجوی هارمونی ارائه ‌شده است که علاوه­بر افزایش پوشش تصویری و امنیت، هزینه‌ها را نیز کاهش می‌دهد. در روش پیشنهادی، نقشه ساختمان به‌صورت فرمت‌های رایج تصویر به‌عنوان ورودی دریافت شده و سپس الگوریتم پیشنهادی با استفاده از محاسبه و تغییر زوایای دوربین‌ها و یافتن بهترین مکان قرارگیری آن‌ها ازنظر میدان دید، پوشش  ناحیه­ای منطقه را افزایش می‌دهد. روش پیشنهادی به دو روش آمیزش نقطه‌ای و ماسک تصادفی انجام می‌گیرد که روش آمیزش نقطه‌ای، زمان جستجو را به‌طور قابل‌ملاحظه‌ای بهبود داده و روش ماسک تصادفی پوشش نزدیک به بهینه‌ای را ارائه می‌دهد. همچنین استفاده از تنوع‌گرایی جمعیت در روش ماسک تصادفی باعث رسیدن به جواب بهینه سراسری شده که مشکل اغلب روش‌های پیشین می‌باشد. روش پیشنهادی پوشش ناحیه‌ای را تا 40٪ بهبود داده است.

کلیدواژه‌ها


عنوان مقاله [English]

Optimal Placement of Cameras to Maximize Visual Coverage using Genetic Algorithm and Harmony Search

نویسندگان [English]

  • M. Karimi 1
  • N. Jafari navimipour 2
1 azad tabriz university
2 tabriz university
چکیده [English]

The Closed-Circuit Television (CCTV) system is effective in a variety of applications, such as traffic
monitoring, crime prevention and the safety of public sites. Therefore, the area coverage of CCTV which increases security and maintains cost reduction is a challenging issue. The typical camera insertion techniques, often use design techniques and trial and error experience, which require more time and cannot determine the optimal location of the cameras. In this paper, we have proposed a new method for optimal camera placement based on computer graphics, harmony search and genetic algorithms. The proposed method can enhance visual coverage, and can also increase environment safety and reduce implementation costs. In the proposed method, the map of the building is received as an input, then the proposed algorithm increases the coverage area by calculating and changing the angles of the cameras and finding the best location in the sensing area. Single point crossover and random mask crossover are used in the proposed method; single point crossover method improving the time of search and the random mask crossover method providing nearly optimal coverage. Also, the population diversification in random mask crossover method leads to an optimal global answer, which has been the main problem in the previous methods. The proposed method increases visual area coverage up to 40%.

کلیدواژه‌ها [English]

  • Area Coverage
  • Closed Circuit Television (CCTV)
  • Genetic Algorithm
  • Harmony Search Algorithm
  • Visual Sensor Networks
   [1]      J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,” Computer networks, vol. 52, pp. 2292-2330, 2008.##
   [2]      F. Aznoli and N. J. Navimipour, “Deployment strategies in the wireless sensor networks: systematic literature review, classification, and current trends,” Wireless Personal Communications, vol. 95, pp. 819-846, 2017.##
   [3]      “Based on Voronoi Diagram for Hole Detection Problem in Wireless Sensor Networks,” Electronic and cyber defense magazine; Year 5, Issue 3, 1396. Electronic Defense and Cybernetics Autumn Magazine (19th series), 2017. (in Persian)##
   [4]      N. Xu, S. Rangwala, K. K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan, et al., “A wireless sensor network for structural monitoring,” in Proceedings of the 2nd international conference on Embedded networked sensor systems, pp. 13-24, 2004.##
   [5]      A. Mirghadri and R. Shyrbanyan, “A new lightweight authentication scheme for wireless sensor networks,” Electronic and cyber defense magazine; Year 4, Issue 3 (1395), Autumn 95 (Successive 15), 2016. (in Persian)##
   [6]      N. J. Navimipour, “Control the Topology and Increase the Tolerance of Heterogeneous Wireless Sensor Networks,” International Journal of Advanced Research in Computer Science, vol. 2, 2011.##
   [7]      N. J. Navimipour and A. M. Rahmani, “The New Genetic Based Method with OptimumNumber of Super Node for Fault Tolerant Systemin Heterogeneous Wireless Sensor Network,” International Journal of Computer and Electrical Engineering, vol. 2, p. 99, 2010.##
   [8]      S. Abdollahzadeh and N. J. Navimipour, “Deployment strategies in the wireless sensor network: a comprehensive review,” Computer Communications, vol. 91, pp. 1-16, 2016.##
   [9]      S. Soro and W. B. Heinzelman, “On the coverage problem in video-based wireless sensor networks,” in Broadband Networks, BroadNets 2005. 2nd International Conference on, pp. 932-939. 2005.##
[10]      D. G. Costa and L. A. Guedes, “The coverage problem in video-based wireless sensor networks: A survey,” Sensors, vol. 10, pp. 8215-8247, 2010.##
[11]      C.-F. Huang and Y.-C. Tseng, “The coverage problem in a wireless sensor network,” Mobile Networks and Applications, vol. 10, pp. 519-528, 2005.##
[12]      M. Cardei, M. T. Thai, Y. Li, and W. Wu, “Energy-efficient target coverage in wireless sensor networks,” in INFOCOM 2005. 24th annual joint conference of the ieee computer and communications societies. proceedings ieee, 2005, pp. 1976-1984.##
[13]      B. Liu, O. Dousse, J. Wang, and A. Saipulla, “Strong barrier coverage of wireless sensor networks,” in Proceedings of the 9th ACM international symposium on Mobile ad hoc networking and computing, 2008, pp. 411-420.##
[14]      S. A. Mostafavi and M. Dehghan, “Optimal visual sensor placement for coverage based on target location profile,” Ad Hoc Networks, vol. 9, pp. 528-54 , 2011, 1##.
[15]      D. Chrysostomou, G. C. Sirakoulis, and A. Gasteratos, “A bio-inspired multi-camera system for dynamic crowd analysis,” Pattern Recognition Letters, vol. 44, pp. 141-151, 2014.##
[16]      U. M. Erdem and S. Sclaroff, “Automated camera layout to satisfy task-specific and floor plan-specific coverage requirements,” Computer Vision and Image Understanding, vol. 103, pp. 156-169, 2006.##
[17]      A. Newell and K. Akkaya, “Distributed collaborative camera actuation for redundant data elimination in wireless multimedia sensor networks,” Ad Hoc Networks, vol. 9, pp. 514-527, 2011.##
[18]      Y. Yao, C.-H. Chen, B. Abidi, D. Page, A. Koschan, and M. Abidi, “Can you see me now? Sensor positioning for automated and persistent surveillance,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 40, pp. 101-115, 2010.##
[19]      A. Mittal and L. S. Davis, “Visibility analysis and sensor planning in dynamic environments,” in European conference on computer vision, 2004, pp. 175-189.##
[20]      A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies,” Journal of Machine Learning Research, vol. 9, pp. 235-284, 2008.##
[21]      S. Ram, K. Ramakrishnan, P. Atrey, V. Singh, and M. Kankanhalli, “A design methodology for selection and placement of sensors in multimedia surveillance systems,” in Proceedings of the 4th ACM international workshop on Video surveillance and sensor networks, pp. 121-130, 2006.##
[22]      H. Mohamadi, A. S. Ismail, and S. Salleh, “Utilizing distributed learning automata to solve the connected target coverage problem in directional sensor networks,” Sensors and Actuators A: Physical, vol. 198, pp. 21-30, 2013.##
[23]      N. A. A. Aziz, K. A. Aziz, and W. Z. W. Ismail, “Coverage strategies for wireless sensor networks,” World academy of science, Engineering and technology, vol. 50, pp. 145-150, 2009.##
[24]      S. Soro and W. Heinzelman, “A survey of visual sensor networks,” Advances in multimedia, vol. 2009, 2009.##
[25]      A. Hossain, P. Biswas, and S. Chakrabarti, “Sensing models and its impact on network coverage in wireless sensor network,” in Industrial and Information Systems, 2008. ICIIS 2008. IEEE Region 10 and the Third international Conference on, pp. 1-5, 2008.##
[26]      A. Fanimokun and J. Frolik, “Effects of natural propagation environments on wireless sensor network coverage area,” in System Theory, 2003. Proceedings of the 35th Southeastern Symposium on, pp. 16-20, 2003.##
[27]      J. O'rourke, “Art gallery theorems and algorithms,” Oxford University Press Oxford, vol. 57, 1987.##
[28]      M. A. Guvensan and A. G. Yavuz, “On coverage issues in directional sensor networks: A survey,” Ad Hoc Networks, vol. 9, pp. 1238-1255, 2011.##
[29]      Z. W. Geem, J. H. Kim, and G. Loganathan, “A new heuristic optimization algorithm: harmony search,” Simulation, vol. 76, pp. 60-68, 2001.##
[30]      Z. W. Geem, “Music-inspired harmony search algorithm: theory and applications,” vol. 191, Springer, 2009.##
[31]      B. Wu, C. Qian, W. Ni, and S. Fan, “Hybrid harmony search and artificial bee colony algorithm for global optimization problems,” Computers & Mathematics with Applications, vol. 64, pp.       2621-2634, 2012.##
[32]      T. Starkweather, D. Whitley, and K. Mathias, “Optimization using distributed genetic algorithms,” in International Conference on Parallel Problem Solving from Nature, pp. 176-185, 1990.##
[33]      P. G. Busacca, M. Marseguerra, and E. Zio, “Multiobjective optimization by genetic algorithms: application to safety systems,” Reliability Engineering & System Safety, vol. 72, pp. 59-74, 2001.##
[34]      A. Konak, D. W. Coit, and A. E. Smith,           “Multi-objective optimization using genetic algorithms: A tutorial,” Reliability Engineering & System Safety, vol. 91, pp. 992-1007, 2006.##
[35] K. S. Lee and Z. W. Geem, “A new structural optimization method based on the harmony search algorithm,” Computers & structures, vol. 82, pp. 781-798, 2004.##