طراحی یک سامانه مخابرات نوری فضای آزاد و ارزیابی عملکرد آن در مواجه با پدیده های جوی

نویسندگان

امام حسین (ع)

چکیده

سامانه‌های مخابرات نوری فضای آزاد(FSO) ، به دلیل امکان ارسال پهنای باند زیاد و امنیت بالا می‌توانند جایگزین مناسبی برای سامانه‌های رادیوئی باشند. مشکل اصلی به‌کارگیری این سامانه‌ها، وجود پدیده‌های جوی محیط انتشار شامل جذب، پراکندگی و آشفتگی است. این اثرات موجب می‌شود که نور منتشرشده در کانال انتقال علاوه بر تضعیف دچار پدیده چندمسیرگی گردد و رفتاری مشابه با پدیده محوشدگی در کانال مخابراتی داشته باشد. در این مقاله مدلی برای بررسی هم‌زمان تضعیف‌های محیط انتشار FSO و آشفتگی ارائه‌ شده است. طراحی یک سامانه FSO با استفاده از ترکیب روش‌های کاهش اثر آشفتگی نظیر متوسط‌گیری از سطح دهانه گیرنده، روش چند فرستنده و یک گیرنده (MISO) و کد برخط 1B4B مورد بررسی قرار گرفته و رفتار آن با استفاده از نمودارهای نرخ احتمال خطا(BER) و احتمال قطع (Outage) در شرایط مختلف آب و هوائی شبیه‌سازی ‌شده است. تحلیل بودجه لینک نشان می‌دهد که یک سامانه FSO با 4 فرستنده با توان ارسالی 200 میلی وات و یک گیرنده با قطر دهنه اپتیک cm25 می‌تواند یک لینک مخابرات نوری با برد حداکثر 10 کیلومتر و نرخ خطای بیت بهتر از 6-10 را در شرایط آشفتگی ضعیف برقرار نماید.

کلیدواژه‌ها


  1. M. A. Khalighi and M. Uysal, “Survey on free space optical
  2. communication: A communication theory perspective,”
  3. Communications Surveys & Tutorials, IEEE, vol. 16, pp.
  4. -2258, 2014.
  5. A. Vats and H. Kaushal, “Analysis of free space optical link
  6. in turbulent atmosphere,” Optik-International Journal for
  7. Light and Electron Optics, vol. 125, pp. 2776-2779, 2014.
  8. M. Ijaz, S. Wu, Z. Fan, W. Popoola, and Z. Ghassemlooy,
  9. “Study of the Atmospheric Turbulence in Free Space
  10. Optical Communications,” 2014.
  11. E. Bayaki, R. Schober, and R. K. Mallik, “Performance
  12. analysis of MIMO free-space optical systems in gammagamma
  13. fading,” Communications, IEEE Transactions on,
  14. vol. 57, pp. 3415-3424, 2009.
  15. Z. Ghassemlooy, W. O. Popoola, V. Ahmadi, and E.
  16. Leitgeb, “MIMO free-space optical communication
  17. employing subcarrier intensity modulation in atmospheric
  18. turbulence channels,” in Communications Infrastructure.
  19. Systems and Applications in Europe, ed: Springer, 2009,
  20. pp. 61-73.
  21. H. R. Khodadadi , M. H. Ghezel Ayagh, K. B. Hossain, and
  22. A. Chaman-Motlagh, “Mitigation of Atmospheric
  23. Turbulence Impact on the Free Space Optical
  24. Communication using Space-Time Coding Based on MISO,
  25. ” Passive Defence Sci. & Tech., vol. 3, pp. 231-237, 2013.
  26. M. R. Bhatnagar, “A One Bit Feedback Based
  27. Beamforming Scheme for FSO MISO System Over
  28. Gamma-Gamma Fading,” Communications, IEEE
  29. Transactions on, vol. 63, pp. 1306-1318, 2015.
  30. R. Boluda-Ruiz, A. Garcia-Zambrana, B. Castillo-Vazquez,
  31. and C. Castillo-Vazquez, “On the capacity of MISO FSO
  32. systems over gamma-gamma and misalignment fading
  33. channels,” Optics express, vol. 23, pp. 22371-22385, 2015.
  34. M. R. Bhatnagar and S. Anees, “On the performance of
  35. Alamouti scheme in Gamma-Gamma fading FSO links with
  36. pointing errors,” Wireless Communications Letters, IEEE,
  37. vol. 4, pp. 94-97, 2015.
  38. C. Ben Naila, A. Bekkali, K. Kazaura, and M. Matsumoto,
  39. “BPSK intensity modulated free-space optical
  40. communications using aperture averaging,” In Photonics
  41. (ICP), 2010 International Conference on, 2010, pp. 1-5.
  42. M. Khalighi, N. Schwartz, N. Aitamer, and S. Bourennane,
  43. “Fading reduction by aperture averaging and spatial
  44. diversity in optical wireless systems,”Optical
  45. Communications and Networking, IEEE/OSA Journal of,
  46. vol. 1, pp. 580-593, 2009.
  47. I. B. Djordjevic, J. A. Anguita, and B. Vasic, “Errorcorrection
  48. coded orbital-angular-momentum modulation for
  49. FSO channels affected by turbulence,” Lightwave
  50. Technology, Journal of, vol. 30, pp. 2846-2852, 2012.
  51. I. Djordjevic, W. E. Ryan, and B. Vasic, Coding for optical
  52. channels: Springer, 2010.
  53. F. Demers, H. Yanikomeroglu, and M. St-Hilaire, “A
  54. survey of opportunities for free space optics in next
  55. generation cellular networks,” In Communication Networks
  56. and Services Research Conference (CNSR), 2011 Ninth
  57. Annual, 2011, pp. 210-216.
  58. M. Al-Habash, R. Phillips, and L. Andrews, “Mathematical
  59. model for the irradiance probability density function of a
  60. laser beam propagating through turbulent media,” Optical
  61. Engineering, vol. 40, pp. 1554-1562, 2001.
  62. M. Brahms and Z. Chahabadi, “Method for the transmission
  63. of data between two stations by means of optical
  64. waveguides,” ed: Google Patents, 1992.
  65. Z. Song, H. Zhou, Z. Geng, and Y. Takasaki, “Dependence
  66. of Jitter Accumulation on Line Codes for Clock Recovery
  67. with Minimal Filtering,” in Telecommunications, 2008.
  68. AICT'08. Fourth Advanced International Conference on,
  69. , pp. 381-385.
  70. A. Vavoulas, H. G. Sandalidis, and D. Varoutas, “Weather
  71. effects on FSO network connectivity,” Optical
  72. Communications and Networking, IEEE/OSA Journal of,
  73. vol. 4, pp. 734-740, 2012.
  74. F. Nadeem, V. Kvicera, M. S. Awan, E. Leitgeb, S.
  75. Muhammad, and G. Kandus, “Weather effects on hybrid
  76. FSO/RF communication link,” Selected Areas in
  77. Communications, IEEE Journal on, vol. 27, pp. 1687-1697,
  78. H. Li-Qiang and W. Zhibin, “A Closed-form Expression for
  79. BER of FSO Links over Gamma-Gamma Atmospheric
  80. Turbulence Channels with Pointing Errors,” 2013.
  81. A. Chaman-Motlagh, V. Ahmadi, and Z. Ghassemlooy, “A
  82. modified model of the atmospheric effects on the
  83. performance of FSO links employing single and multiple
  84. receivers,” Journal of Modern Optics, vol. 57, pp. 37-42,
  85. T. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M.
  86. Uysal, “FSO links with spatial diversity over strong
  87. atmospheric turbulence channels,” In Communications,
  88. ICC'08. IEEE International Conference on, 2008, pp.
  89. -5384.
  90. H. Yuksel and C. C. Davis, “Aperture averaging analysis
  91. and aperture shape invariance of received scintillation in
  92. free-space optical communication links,” in