طراحی یک سامانه ارتباطات گمنام با استفاده از رمزنگاری مبتنی بر Lattice

نویسندگان

1 دانشجوی دکترا، دانشگاه گیلان

2 دانشجوی کارشناسی ارشد، دانشگاه گیلان

3 استادیار، دانشگاه گیلان

چکیده

شبکه های گمنام برای تحقق دو عامل مهم محرمانگی داده ها و گمنامی کاربران در بستر شبکه اینترنت فعالیت می کند. در سال های اخیر با رشد و توسعه پردازش های کوانتومی و همچنین وقوع حملات جدید نیاز به اصلاح در ساختار شبکه های گمنام کلاسیک از جمله TOR، به وجود آمده است. از این رو نیاز به ارائه یک معماری مقاوم در برابر حملات عصر پردازش های کوانتومی و همچنین لزوم مقاوم سازی این شبکه ها در برابر حملات تشخیص هویت کاربران و عدم انکار، باعث شده تا معماری کلاسیک بازبینی و اصلاح شود. ما در این مقاله به ارائه معماری مبتنی بر Lattice و سیستم رمزنگار NTRU و امضای دیجیتال NSS پرداخته ایم که در نتیجه ساختار معماری شبکه های گمنام کلاسیک با توجه به نیازمندی های کارایی و آسیب پذیری های امنیتی پیش رو اصلاح شده اند. معماری پیشنهادی در مقابل حملات کوانتومی مقاوم بوده که به طور تئوری اثبات و طی یک تحلیل امنیتی جامع کاملاً عملی، بررسی شده است.

کلیدواژه‌ها


[1] A. Egners, D. Gatzen, A. Panchenko and U. Meyer, ―Introducing
SOR: SSH-based Onion Routing‖, in proceeding of 26th
International Conference on Advanced Information Networking
and Applications, Pages 280 – 286, March 2012.
[2] P. Winter and S. Lindskog. Spoiled Onions: Exposing Malicious
Tor Exit Relays. Technical report, Karlstad University, 2014.
[3] B. Westermann, R. Wendolsky, L. Pimenidis and Dogan
Kesdogan, ―Cryptographic Protocol Analysis of AN.ON‖,
Springer Berlin Heidelberg, volume 6052. p. 114–28, 2010.
[4] P. W. Shor, ―Polynomial-Time Algorithms for Prime
Factorization and Discrete Logarithms on a Quantum Computer‖,
Society for Industrial and Applied Mathematics, Volume 26,
Issue 5, Pages 1484–1509, 1997.
[5] J. Hoffstein, J. Pipher and J. H. Silverman, NTRU: A Ring-Based
Public Key Cryptosystem, Algorithmic Number Theory, Lecture
Notes in Computer Science 1423, pages 267-288, Springer-
Verlag, 1998.
[6] J. Hoffstein, N. Howgrave-Graham, J. Pipher and W. Whyte,
Practical lattice-Based cryptography: NTRUEncrypt and
NTRUSign, The LLL Algorithm: Survey and Applications, pages
349-390, Information Security and Cryptography, Springer-
Verlag, 2010.
[7] E.F. Brickell and K.S. McCurley. Interactive Identification and
Digital Signatures, AT&T Technical Journal, November/
December, 1991, 73–86.
[8] L.C. Guillou and J.-J. Quisquater. A practical zero-knowledge
protocol fitted to Security microprocessor minimizing both
transmission and memory, Advances In Cryptology—Eurocrypt
’88, Lecture Notes in Computer Science 330 (C.G. G¨unther, ed.),
Springer-Verlag, 1988, 123–128.
[9] J. Hoffstein, D. Lieman, J.H. Silverman, Polynomial Rings and
Efficient Public Key Authentication, in Proceeding of the
International Workshop on Cryptographic Techniques and ECommerce
(CrypTEC ’99), Hong Kong, (M. Blum and C.H. Lee,
eds.), City University of Hong Kong Press.
[10] J. Hoffstein, J.H. Silverman, Polynomial Rings and Efficient
Public Key Authen- tication II, in Proceedings of a Conference on
Cryptography and Number Theory (CCNT ’99), (I. Shparlinski,
ed.), Birkhauser.
[11] A.J. Menezes and P.C. van Oorschot and S.A. Vanstone.
Handbook of Applied Cryptography, CRC Press, 1996.
[12] T. Okamoto. Provably secure and practical identification schemes
and correspond- ing signature schemes, Advances in
Cryptology—Crypto ’92, Lecture Notes in Computer Science
740 (E.F. Brickell, Ed.) Springer-Verlag, 1993, 31–53.
[13] C.P. Schnorr. Efficient identification and signatures for smart
cards, Advances in Cryptology—Crypto ’89, Lecture Notes in
Computer Science 435 (G. Brassard, ed), Springer-Verlag, 1990,
239–251.
[14] J. Stern. A new identification scheme based on syndrome
decoding, Advances in Cryptology—Crypto ’93, Lecture Notes
in Computer Science 773 (D. Stinson, Ed.), Springer-Verlag,
1994, 13–21.
[15] J. Stern. Designing identification schemes with keys of short size,
Advances in Cryptology—Crypto ’94, Lecture Notes in
Computer Science 839 (Y.G. Desmedt, ed), Springer-Verlag,
1994, 164–173.
[16] D. Stinson, Cryptography: Theory and Practice. CRC Press,
1997.
[17] www.ntru.com.
[18] J. Hoffstein, N. Howgrave-Graham, J. Pipher, J.H. Silverman,
and W. Whyte. "NTRU Sign: digital signature using the NTRU
lattice." In Topics in cryptology-CT-RSA 2003, Vol. 2612 of
Lecture Notes in compt. Sci., pp. 122-140, Springer, Berlin.
[19] J. Hoffstein, J. Pipher, J.H. Silverman, "An Introduction to
mathematical cryptography." Springer-Verlag, last edition, 2008.
[20] R. Kouzmenko. "Generalization of the NTRU cryptosystem."
Master's thesis, Polytechnique Montreal, Canada, 2006.
[21] D. Coppersmith and A. Shamir, Lattice Attacks on NTRU,
Advances in Cryptology, EUROCRYPT '97, Lecture Notes in
Computer Science 1233, pages 52-61, Springer-Verlag, 1997.
[22] NTRU Cryptosystems. Estimated breaking times for NTRU
lattices. Technical report, 1999, Updated 2003. Tech. Note 012,
www.ntru.com/cryptolab/tech_notes.htm.
[23] B. Schneier, ―How the NSA Attacks Tor/Firefox Users With
QUANTUM and FOXACID‖, A blog covering security and
security technology, Technical Report, October 2013.
[24] SPIEGEL Staff, ―Quantum Spying: GCHQ Used Fake LinkedIn
Pages to Target Engineers‖, DER SPIEGEL, November 2013.
[25] Y. Zhu, X. Fu, B. Graham and R. Bettati, ―Correlation-Based
Traffic Analysis Attacks on Anonymity Networks‖, IEEE
Transactions on Parallel and Distributed Systems, Volume 21,
Issue 7, Pages 954 – 967, July 2010.
[26] C. Forst, ―Attacks on anonymity networks‖, Selected Topics in
Distributed Systems, Technical Report, Institute of Distributed
Systems, Ulm University, 2013.
[27] T. Okamoto, K. Tanaka and S. Uchiyama, ―Quantum Public-Key
Cryptosystems‖, In proceeding of CRYPTO '00 Proceedings of
the 20th Annual International Cryptology Conference on
Advances in Cryptology, Pages 147-165, 2000.
[28] R. A. Perlner and David A. Cooper, ―Quantum resistant public
key cryptography: a survey‖, In Proceeding of IDtrust '09
Proceedings of the 8th Symposium on Identity and Trust on the
Internet, Pages 85-93, 2009.