Introducing a decoy-state version of the high-dimensional polarization-phase (PoP) quantum key distribution protocol and explaining its implementation

Document Type : Original Article

Authors

1 Researcher, Malek Ashtar University of Technology, Shahin Shahr, Shahin Shahr, Iran

2 Assistant Professor, Malek Ashtar University of Technology, Shahin Shahr, Shahin Shahr, Iran

Abstract

Single-photon generation is a constant problem in the experimental implementation of quantum key distribution (QKD) systems. Using the attenuated laser pulses is a standard process for generating single photons. In this case, the number of photons follows a Poisson distribution. Such pulses are highly vulnerable to the photon number splitting (PNS) attack. The decoy-state protocol is proposed as an important and effective weapon to deal with the PNS attack. High-dimensional quantum states are another solution to improve the performance of quantum communication systems in the presence of non-ideal components. Generally, the processes related to the production, control, transmission, and detection of high-dimensional quantum states are complex and expensive. The PoP protocol is a high-dimensional QKD protocol based on the polarization and phase of single photons, which, unlike most existing high-dimensional protocols, is simple and contains well-known general components such as conventional optical sources and quantum channels. Using decoy states in the PoP protocol can be a simple and effective solution to reduce the limitations caused by the use of imperfect and non-ideal components in quantum communication systems. This idea significantly improves the main parameters related to the performance of QKD systems (i.e., secure key generation rate and secure transmission distance). In this paper, a decoy-state version of the PoP protocol is introduced. Also, the details related to the schematic of the implementation, the execution method, and the classical post-processing operations required to extract its secure key are explained. .
 

Keywords

Main Subjects


Smiley face

[1] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Theor. Comput. Sci., vol. 560, pp. 7–11, Dec. 2014, doi: 10.1016/j.tcs.2014.05.025.
[2] A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett., vol. 67, no. 6, pp. 661–663, Aug. 1991, doi: 10.1103/physrevlett.67.661.
[3] C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett., vol. 68, no. 21, pp. 3121–3124, May 1992, doi: 10.1103/physrevlett.68.3121.
[4] D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” Appl. Phys. Lett., vol. 87, no. 19, Nov. 2005, doi: 10.1063/1.2126792.
[9] A. Gaeeni, “An introduction to the probability
theory,” Imam Hossein Univ. Press, Tehran, 2006 (In
Persian).
[10] G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett., vol. 85, no. 6, pp. 1330–1333, Aug. 2000, doi: 10.1103/physrevlett.85.1330.
[11] N. Lütkenhaus, “Security against individual attacks for realistic quantum key distribution,” Phys. Rev. A, vol. 61, no. 5, Apr. 2000, doi: 10.1103/physreva.61.052304.
[12] C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered Single Photons from a Quantum Dot,” Phys. Rev. Lett., vol. 86, no. 8, pp. 1502–1505, Feb. 2001, doi: 10.1103/physrevlett.86.1502.
[13] B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature, vol. 407, no. 6803, pp. 491–493, Sep. 2000, doi: 10.1038/35035032.
[14] P. Michler et al., “A Quantum Dot Single-Photon Turnstile Device,” Science, vol. 290, no. 5500, pp. 2282–2285, Dec. 2000, doi: 10.1126/science.290.5500.2282.
[15] T. Gao , M. von Helversen, C. Antón-Solanas, C. Schneider, and T. Heindel, “Atomically-thin single-photon sources for quantum communication,” npj 2D Mater. Appl., vol. 7, no. 4 ,Jan. 2023, doi: 10.1038/s41699-023-00366-4.
[16] C. Couteau et al., “Applications of single photons to quantum communication and computing,” Nature Rev. Phys., vol. 5, no. 6, pp. 326–338, May 2023, doi: 10.1038/s42254-023-00583-2.
[17] E. Waks, C. Santori, and Y. Yamamoto, “Security aspects of quantum key distribution with sub-Poisson light,” Phys. Rev. A, vol. 66, no. 4, Oct. 2002, doi: 10.1103/physreva.66.042315.
[18] W.-Y. Hwang, “Quantum Key Distribution with High Loss: Toward Global Secure Communication,” Phys. Rev. Lett., vol. 91, no. 5, Aug. 2003, doi: 10.1103/physrevlett.91.057901.
[19] H.-K. Lo, X. Ma, and K. Chen, “Decoy State Quantum Key Distribution,” Phys. Rev. Lett., vol. 94, no. 23, Jun. 2005, doi: 10.1103/physrevlett.94.230504.
[20] X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A, vol. 72, no. 1, Jul. 2005, doi: 10.1103/physreva.72.012326.
[21] V. Zapatero, W. Wang, and M. Curty, “A fully passive transmitter for decoy-state quantum key distribution,” Quantum Sci. Technol., vol. 8, no. 2, p. 025014, Feb. 2023, doi: 10.1088/2058-9565/acbc46.
[22] S. Dong et al., “Decoy state semi-quantum key distribution,” EPJ Quant. Technol., vol. 10, no. 1, May 2023, doi: 10.1140/epjqt/s40507-023-00175-0.
[23] Y. Zhou et al., “Effect of weak randomness flaws on security evaluation of practical quantum key distribution with distinguishable decoy states,” Chin. Phys. B, vol. 32, no. 5, p. 050305, May 2023, doi: 10.1088/1674-1056/ac8730.
[24] E. Diamanti, “Security and implementation of differential phase shift quantum key distribution systems,” Doctoral Dissertation, Stanford University, 2006.
[25] H. Bechmann-Pasquinucci and W. Tittel, “Quantum cryptography using larger alphabets,” Phys. Rev. A, vol. 61, no. 6, May 2000, doi: 10.1103/physreva.61.062308.
[26] M. Krenn, A. Hochrainer, M. Lahiri, and A. Zeilinger, “Entanglement by Path Identity,” Phys. Rev. Lett., vol. 118, no. 8, Feb. 2017, doi: 10.1103/physrevlett.118.080401.
[27] I. Vagniluca et al., “Efficient Time-Bin Encoding for Practical High-Dimensional Quantum Key Distribution,” Phys. Rev. Appl., vol. 14, no. 1, Jul. 2020, doi: 10.1103/physrevapplied.14.014051.
[28] D. Cozzolino et al., “Air-core fiber distribution of hybrid vector vortex-polarization entangled states,” Adv. Photonics, vol. 1, no. 04, p. 1, Aug. 2019, doi: 10.1117/1.ap.1.4.046005.
[29] M. A. Ciampini et al., “Stimulated emission tomography: beyond polarization,” Opt. Lett., vol. 44, no. 1, p. 41, Dec. 2018, doi: 10.1364/ol.44.000041.
[30] F. Steinlechner et al., “Distribution of high-dimensional entanglement via an intra-city free-space link,” Nat. Commun., vol. 8, no. 1, Jul. 2017, doi: 10.1038/ncomms15971.
[31] B. Galmès, K. Phan-Huy, L. Furfaro, Y. K. Chembo, and J.-M. Merolla, “Nine-frequency-path quantum interferometry over 60 km of optical fiber,” Phys. Rev. A, vol. 99, no. 3, Mar. 2019, doi: 10.1103/physreva.99.033805.
[32] Y. Ding et al., “High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits,” npj Quantum Inf., vol. 3, no. 1, Jun. 2017, doi: 10.1038/s41534-017-0026-2.
[33] J. Wang et al., “Multidimensional quantum entanglement with large-scale integrated optics,” Science, vol. 360, no. 6386, pp. 285–291, Apr. 2018, doi: 10.1126/science.aar7053.
[34] A. M. Toonabi, M. D. Darareh, and S. Janbaz, “A two-dimensional quantum key distribution protocol based on polarization-phase encoding,” Int. J. Quantum Inf., vol. 17, no. 07, p. 1950058, Oct. 2019, doi: 10.1142/s0219749919500588.
[35] A. M. Toonabi, M. D. Darareh, and S. Janbaz, “High-dimensional quantum key distribution using polarization-phase encoding: security analysis,” Int. J. Quantum Inf., vol. 18, no. 06, p. 2050031, Sep. 2020, doi: 10.1142/s0219749920500318.
[36] C. Marand and P. D. Townsend, “Quantum key distribution over distances as long as 30 km,” Opt. Lett., vol. 20, no. 16, p. 1695, Aug. 1995, doi: 10.1364/ol.20.001695.
[37] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys., vol. 74, no. 1, pp. 145–195, Mar. 2002, doi: 10.1103/revmodphys.74.145.
[38] S. Bandyopadhyay, P.O. Boykin, V. Roychowdhury, and F. Vatan, “A New Proof for the Existence of Mutually Unbiased Bases,” Algorithmica, vol. 34, no. 4, pp. 512–528, Nov. 2002, doi: 10.1007/s00453-002-0980-7.
[39] L. O. Mailloux, R. D. Engle, M. R. Grimaila, D. D. Hodson, J. M. Colombi, and C. V. McLaughlin, “Modeling decoy state Quantum Key Distribution systems,” J. Def. Model. Simul., vol. 12, no. 4, pp. 489–506, Jun. 2015, doi: 10.1177/1548512915588572.
 
Volume 12, Issue 2 - Serial Number 46
September 2024
Pages 99-107
  • Receive Date: 17 April 2024
  • Revise Date: 06 July 2024
  • Accept Date: 03 August 2024
  • Publish Date: 31 August 2024