[1] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Theor. Comput. Sci., vol. 560, pp. 7–11, Dec. 2014, doi: 10.1016/j.tcs.2014.05.025.
[2] A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett., vol. 67, no. 6, pp. 661–663, Aug. 1991, doi: 10.1103/physrevlett.67.661.
[3] C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett., vol. 68, no. 21, pp. 3121–3124, May 1992, doi: 10.1103/physrevlett.68.3121.
[4] D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” Appl. Phys. Lett., vol. 87, no. 19, Nov. 2005, doi: 10.1063/1.2126792.
[5]
A. Aghanians1, S. N. Doustimotlagh, “Generalized Version of the BB84 QKD Protocol with n Polarization Bases and Unequal Probabilities, ” Journal of Electronical & Cyber Defence, vol. 9, no. 1, Serial No. 33, Aug. 2020 (In Persian). https://dor.isc.ac/dor/DOR:20.1001.1.23224347.1400.9.1.10.7[6]
S. M. Hosseini, S. Janbaz, M. Davoudi Darareh, A. Zaghian, “A New Approach for Estimating the Rate of Emission in Quantum Bit Exchange Systems Using Binomial Distribution,” Journal of Electronical & Cyber Defence, Vol. 7, No. 1, Serial No. 25, 2019, (In Persian).
[9] A. Gaeeni, “An introduction to the probability
theory,” Imam Hossein Univ. Press, Tehran, 2006 (In
Persian).
[10] G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett., vol. 85, no. 6, pp. 1330–1333, Aug. 2000, doi: 10.1103/physrevlett.85.1330.
[11] N. Lütkenhaus, “Security against individual attacks for realistic quantum key distribution,” Phys. Rev. A, vol. 61, no. 5, Apr. 2000, doi: 10.1103/physreva.61.052304.
[12] C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered Single Photons from a Quantum Dot,” Phys. Rev. Lett., vol. 86, no. 8, pp. 1502–1505, Feb. 2001, doi: 10.1103/physrevlett.86.1502.
[13] B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature, vol. 407, no. 6803, pp. 491–493, Sep. 2000, doi: 10.1038/35035032.
[14] P. Michler et al., “A Quantum Dot Single-Photon Turnstile Device,” Science, vol. 290, no. 5500, pp. 2282–2285, Dec. 2000, doi: 10.1126/science.290.5500.2282.
[15] T. Gao , M. von Helversen, C. Antón-Solanas, C. Schneider, and T. Heindel, “Atomically-thin single-photon sources for quantum communication,” npj 2D Mater. Appl., vol. 7, no. 4 ,Jan. 2023, doi: 10.1038/s41699-023-00366-4.
[16] C. Couteau et al., “Applications of single photons to quantum communication and computing,” Nature Rev. Phys., vol. 5, no. 6, pp. 326–338, May 2023, doi: 10.1038/s42254-023-00583-2.
[17] E. Waks, C. Santori, and Y. Yamamoto, “Security aspects of quantum key distribution with sub-Poisson light,” Phys. Rev. A, vol. 66, no. 4, Oct. 2002, doi: 10.1103/physreva.66.042315.
[18] W.-Y. Hwang, “Quantum Key Distribution with High Loss: Toward Global Secure Communication,” Phys. Rev. Lett., vol. 91, no. 5, Aug. 2003, doi: 10.1103/physrevlett.91.057901.
[19] H.-K. Lo, X. Ma, and K. Chen, “Decoy State Quantum Key Distribution,” Phys. Rev. Lett., vol. 94, no. 23, Jun. 2005, doi: 10.1103/physrevlett.94.230504.
[20] X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A, vol. 72, no. 1, Jul. 2005, doi: 10.1103/physreva.72.012326.
[21] V. Zapatero, W. Wang, and M. Curty, “A fully passive transmitter for decoy-state quantum key distribution,” Quantum Sci. Technol., vol. 8, no. 2, p. 025014, Feb. 2023, doi: 10.1088/2058-9565/acbc46.
[22] S. Dong et al., “Decoy state semi-quantum key distribution,” EPJ Quant. Technol., vol. 10, no. 1, May 2023, doi: 10.1140/epjqt/s40507-023-00175-0.
[23] Y. Zhou et al., “Effect of weak randomness flaws on security evaluation of practical quantum key distribution with distinguishable decoy states,” Chin. Phys. B, vol. 32, no. 5, p. 050305, May 2023, doi: 10.1088/1674-1056/ac8730.
[24] E. Diamanti, “Security and implementation of differential phase shift quantum key distribution systems,” Doctoral Dissertation, Stanford University, 2006.
[25] H. Bechmann-Pasquinucci and W. Tittel, “Quantum cryptography using larger alphabets,” Phys. Rev. A, vol. 61, no. 6, May 2000, doi: 10.1103/physreva.61.062308.
[26] M. Krenn, A. Hochrainer, M. Lahiri, and A. Zeilinger, “Entanglement by Path Identity,” Phys. Rev. Lett., vol. 118, no. 8, Feb. 2017, doi: 10.1103/physrevlett.118.080401.
[27] I. Vagniluca et al., “Efficient Time-Bin Encoding for Practical High-Dimensional Quantum Key Distribution,” Phys. Rev. Appl., vol. 14, no. 1, Jul. 2020, doi: 10.1103/physrevapplied.14.014051.
[28] D. Cozzolino et al., “Air-core fiber distribution of hybrid vector vortex-polarization entangled states,” Adv. Photonics, vol. 1, no. 04, p. 1, Aug. 2019, doi: 10.1117/1.ap.1.4.046005.
[29] M. A. Ciampini et al., “Stimulated emission tomography: beyond polarization,” Opt. Lett., vol. 44, no. 1, p. 41, Dec. 2018, doi: 10.1364/ol.44.000041.
[30] F. Steinlechner et al., “Distribution of high-dimensional entanglement via an intra-city free-space link,” Nat. Commun., vol. 8, no. 1, Jul. 2017, doi: 10.1038/ncomms15971.
[31] B. Galmès, K. Phan-Huy, L. Furfaro, Y. K. Chembo, and J.-M. Merolla, “Nine-frequency-path quantum interferometry over 60 km of optical fiber,” Phys. Rev. A, vol. 99, no. 3, Mar. 2019, doi: 10.1103/physreva.99.033805.
[32] Y. Ding et al., “High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits,” npj Quantum Inf., vol. 3, no. 1, Jun. 2017, doi: 10.1038/s41534-017-0026-2.
[33] J. Wang et al., “Multidimensional quantum entanglement with large-scale integrated optics,” Science, vol. 360, no. 6386, pp. 285–291, Apr. 2018, doi: 10.1126/science.aar7053.
[34] A. M. Toonabi, M. D. Darareh, and S. Janbaz, “A two-dimensional quantum key distribution protocol based on polarization-phase encoding,” Int. J. Quantum Inf., vol. 17, no. 07, p. 1950058, Oct. 2019, doi: 10.1142/s0219749919500588.
[35] A. M. Toonabi, M. D. Darareh, and S. Janbaz, “High-dimensional quantum key distribution using polarization-phase encoding: security analysis,” Int. J. Quantum Inf., vol. 18, no. 06, p. 2050031, Sep. 2020, doi: 10.1142/s0219749920500318.
[36] C. Marand and P. D. Townsend, “Quantum key distribution over distances as long as 30 km,” Opt. Lett., vol. 20, no. 16, p. 1695, Aug. 1995, doi: 10.1364/ol.20.001695.
[37] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys., vol. 74, no. 1, pp. 145–195, Mar. 2002, doi: 10.1103/revmodphys.74.145.
[38] S. Bandyopadhyay, P.O. Boykin, V. Roychowdhury, and F. Vatan, “A New Proof for the Existence of Mutually Unbiased Bases,” Algorithmica, vol. 34, no. 4, pp. 512–528, Nov. 2002, doi: 10.1007/s00453-002-0980-7.
[39] L. O. Mailloux, R. D. Engle, M. R. Grimaila, D. D. Hodson, J. M. Colombi, and C. V. McLaughlin, “Modeling decoy state Quantum Key Distribution systems,” J. Def. Model. Simul., vol. 12, no. 4, pp. 489–506, Jun. 2015, doi: 10.1177/1548512915588572.