[1] S.A. Dudani and K.J. Breeding, “Aircraft Identification by Moment Invariants,” IEEE Transactions on Computers, vol. 26, pp. 39-46, 1977, DOI: 10.1109/TC.1977.5009272.
[2] T.P. Wallace and P.A. Wintz, “An Efficient Three-Dimensional Aircraft Recognition Algorithm Using Normalized Fourier Descriptors,” Computer Graphics and Image Processing, vol. 13, pp. 99-126, 1980, DOI: 10.1016/S0146-664X(80)80035-9.
[3] J.W. Gorman, O.R. Mitchell and F.P. Kuhl, “Partial Shape Recognition Using Dynamic Programming,” IEEE Transaction on Pattern Analysis and Machin Intelligence, vol. 10, 1988, DOI: 10.1109/34.3887.
[4] M. Alsultanny and Y. Abbas, “Pattern Recognition Using Multilayer Neural Genetic Algorithm,” Neurocomputing, vol. 51, pp. 237-247, 2003, DOI: 10.1016/S0925-2312(02)00619-7.
[5] C.M. Bishop, “Neural Nerworks for Pattern Recognition,” Oxford University Press, 1995, ISBN: 978-0195667998.
[6] M. Shahrezaee and M. S. Alamdari, “The Application of Numerical Analysis Techniques to Pattern Recognition of Helicopters by Area Method, Journal of Mathematical Research,” pp. 51–60, 2015, DOI: 10.29252/mmr.1.2.51.
[7] M.S. Alamdari, M. Fatemi, and A. Ghaffari, “A modified sequential quadratic programming method for sparse signal recovery problems,” Signal Processing, vol. 207, pp. 108955, 2023, DOI: 10.1016/j.sigpro.2023.108955.
[8] S. Huang, H. Zhang and A. Pižurica, “A robust sparse representation model for hyperspectral image classification,” Sensors, vol. 17, no. 9, 2017, DOI: 10.3390/s17092087.
[9] M. S. Alamdari, M. Fatemi, A. Ghaffari, “The Recovery of Sparse Signals by Sequential Quadratic Programming Approach,” Journal of Operational Research and Its Applications, pp. 19–32, 2023, DOI: 10.21018/jamlu. 2023.1932.21.
[10] M. S. Alamdari and M. Fatemi, “Presenting a new method to separate fetal heart signals from the mother by using sequential quadratic programming,” Journal of Advanced Mathematical Modeling, pp. 153–167, 2023, DOI: 10.22055/jamm.2023.43652.2157.
[11] M. S. Alamdari, “Providing an optimal mathematical model based on sparse display to improve image reconstruction,” Journal of New Researches in Mathematics, 2023, DOI:10.30495/jnrm.2023.73817.242.
[12] H. Mohimani, M. Babaie-Zadeh, and C. Jutten, “A fast approach for overcomplete sparse decomposition based on smoothed norm,” IEEE Trans. Signal Process., vol. 57, pp. 289-301, 2009, DOI: 10.1109/TSP.2008. 2007606.
[13] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Yi Ma, “Robust face recognition via sparse representation,” IEEE Transaction on Pattern Analysis and Machine Intelligence, no. 2, pp. 210–227, February 2009, DOI: 10.1109/TPAMI. 2008.79.
[14] J. Yin, et al., “Kernel sparse representation based classification,” vol. 77, no. 1, pp. 120-128, 2012, DOI: 10.1016/j.neucom.2011.08.018.
[15] L. Zhang, et al., “Kernel sparse representation-based classifier,” Signal Processing, IEEE Transactions on, pp. 1684-1695, 2012, DOI: 10.1109/TSP.2011. 2179539.
[16] C. Lu, et al., “Face recognition via weighted sparse representation,” Journal of Visual Communication and Image Representation, vol. 24, no. 2, pp. 111-116, 2013, DOI: 10.1016/j.jvcir.2012.05.003.
[17] D. L. Donoho, and M. Elad, “Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization,” Proc of the National Acadmy of Sciences, vol. 100, no. 5, 2003, DOI: 10.1073/pnas.0437847100.
[18] M. Babaie-Zadeh, B. Mehrdad, and G.B. Giannakis, “Weighted sparse signal decomposition. in Acoustics,” IEEE International Conference, 2012, DOI: 10.1109/ICASSP. 2012.6288652.
[19] K. Ma, R. J. Jannorone and J. W. Gorman, “FAST: parallel airplane pattern recognition,” Proceedings. The Twenty-Second Southeastern Symposium on System Theory, Cookeville, TN, USA, pp. 7-11, 1990.