[1] K. R. Kakkirala, S. R. Chalamala, and S. Jami, “Thermal Infrared Face Recognition: A review,” UKSim-AMSS 19th International Conference on Modelling & Simulation, pp. 55–60, 2017, DOI:10.1109/UKSim.2017.38
[2] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Yi Ma, “Robust face recognition via sparse representation,” IEEE Transaction on Pattern Analysis and Machine Intelligence, no. 2, pp. 210–227, February 2009, DOI: 10.1109/TPAMI.2008.79.
[3] K. Awedat, A. Essa, and V. Asari, “Sparse Representation Classification Based Linear Integration of -norm and -norm for Robust Face Recognition,” presented at the Electro Information Technology (EIT), IEEE International Conference on, Lincoln, NE, USA, 2017, DOI:10.1109/EIT.2017.8053403.
[4] T. Liu, J. X. Mi, Y. Liu, and C. Li, “Robust face recognition via sparse boosting representation,” Neurocomputing, vol. 214, pp. 944–957, 2016, DOI:10.1016/j.neucom.2016.06.071.
[5] W. Jinming, and L. Haifeng, “Binary sparse signal recovery with binary matching pursuit,” Inverse Problems., vol. 37, no. 6, pp. 14–65, 2021, DOI: 10.1088/1361-6420/abf903.
[6] R. Liu, M. Shu, and C. Chen, “ECG Signal Denoising and Reconstruction Based on Basis Pursuit,” Applied Sciences 11, no. 4, 2021, DOI:10.3390/app11041591.
[7] A. Wan, “Uniform RIP Conditions for Recovery of Sparse Signals by Minimization,” in IEEE Transactions on Signal Processing, vol. 68, pp. 5379–5394, 2020, DOI:10.1109/TSP.2020.3022822.
[8] H. Mohimani, M. Babaie-Zadeh, and C. Jutten, “A fast approach for overcomplete sparse decomposition based on smoothed norm,” IEEE Trans. Signal Process., vol. 57, no. 1, pp. 289–301, 2009, DOI: 10.1109/TSP.2008.2007606.
[9] Babaie-Zadeh, M., B. Mehrdad, and G.B. Giannakis, “Weighted sparse signal decomposition. in Acoustics,” Speech and Signal Processing (ICASSP), IEEE International Conference on. 2012, DOI: 10.1109/ICASSP.2012.6288652.
[10] D. L. Donoho, “For most large underdetermined systems of linear equation the minimal norm solution is also the sparsest solution,” Tech. Rep, 2004, DOI: 10.1002/cpa.20132.
[11] M. Malek-Mohammadi, M. Jansson, A. Owrang, A. Koochakzadeh, and M. Babaie-Zadeh, “DOA estimation in partially correlated noise using low-rank/sparse matrix decomposition,” in IEEE Sensor Array and Multichannel Signal Processing Workshop, pp. 373–376, 2014, DOI: 10.1109/SAM.2014.6882419.
[12] D. L. Donoho, and M. Elad, “Optimally sparse representation in general (nonorthogonal) dictionaries via minimization,” Proc of the National Acadmy of Sciences vol. 100, 2003, DOI: 10.1073/pnas.0437847100
[13] M. S. Alamdari, M. Fatemi and A. Ghaffari, “A Modified Sequential Quadratic Programming Method for Sparse Signal Recovery Problems,” Signal Processing, 2023, DOI: 10.1016/j.sigpro.2023.108955.
[14] M. S. Alamdari, M. Fatemi, A. Ghaffari, “The Recovery of Sparse Signals by Sequential Quadratic Programming Approach,” Journal of Operational Research and Its Applications, pp. 19–32, 2023, DOI: 10.21018/jamlu.2023.1932.21.
[15] M. Elad, “Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing,” Springer Science ans Business Media, 2010, DOI: 10.1007/978-1-4419.
[16] D. L. Donoho, M. Elad, and V. Temlyakov, “Stable recovery of sparse overcomplete representations in the presence of noise,” IEEE Trans. Info. Theory, vol. 52, no. 1, pp. 6–18, 2006, DOI: 10.1109/TIT.2005.860430.
[17] K. Huang, and S. Aviyente, “Sparse representation for signal classification,” in Advances in neural information processing systems. 2006.
[18] M. S. Alamdari and M. Fatemi, “Presenting a new method to separate fetal heart signals from the mother by using sequential quadratic programming,” Journal of Advanced Mathematical Modeling, pp. 153–167, 2023, DOI: 10.22055/jamm.2023.43652.2157.
[19] M. Shahrezaee and M. S. Alamdari, “The Application of Numerical Analysis Techniques to Pattern Recognition of Helicopters by Area Method, Journal of Mathematical Research,” pp. 51–60, 2015, DOI: 10.29252/mmr.1.2.51.
[20] M. S. Alamdari, “Providing an optimal mathematical model based on sparse display to improve image reconstruction,” Journal of New Researches in Mathematics, 2023, DOI: 10.30495/jnrm.2023.73817.2426.
[21] F. Samaria, and A. Harter, “Parameterisation of a stochastic model for human face identification,” In Second IEEE workshop on applications of computer vision, Sarasota ,1994.
[22] A. Martinez, and R. Benavente, “The AR face database. In: CVC technical report, no. 24, 1998.
[23] H. Khosravi, A. Ghaffari, and J. Vahidi, “Face recognition via weighted non-negative sparse representation,” International Journal of Nonlinear Analysis and Applications, vol. 12, no. 2, pp. 1141–1150, 2021.
[24] H. Motameni, “Face recognition using sparce reprasentations and p-laplacian,” Journal of Advances in Computer Research, vol. 10, no. 4, pp. 37–49, 2019.