] Bartos, Karel, Michal Sofka, and Vojtech Franc. ”Optimized Invariant Representation of Network Traffic for Detecting Unseen Malware Variants.” USENIX Security Symposium. 2016.
[2] Liu, L.; Wang, B. Sh.; Yu, B.; Zhong, Q. X. “Automatic Malware Classification and New Malware Detection Using Machine Learning”; Front. Inf. Technol. Electron. Eng. 2017, 18, 1336–1347.
[3] Seo, S. H.; Gupta, A.; Mohamed Sallam, A.; Bertino, E.; Yim,K. “Detecting Mobile Malware Threats to Homeland Security through Static Analysis”; J. Netw. Comput. Appl. 2014, 38, 43-53.
[4] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. 2018. Recent trends in deep learning based natural language processing. IEEE Comput. Intell. Mag. 13, (2018)
[5] Nayeem, Kh.; Johari, A.; Adnan, Sh. “Defending Malicious Script Attacks Using Machine Learning Classifiers”; Wirel.Commun. Mob. Com. 2017.
[6] Z.-U. Rehman et al., “Machine learning-assisted signature and heuristic-based detection of malwares in اندروید devices,” Computers & Electrical Engineering, vol. 69, pp.828-841, 2018.
[7] H. Sayadi, N. Patel, S. M. PD, A. Sasan, S. Rafatirad, and H.Homayoun, “Ensemble learning for effective run-time hardware-based malware detection: A comprehensive analysis and classification,” in 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), IEEE, pp. 1-6, 2018.
[8] N. Patel, A. Sasan, and H. Homayoun, “Analyzing hardware based malware detectors,” in 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC), IEEE, pp. 1-6, 2017.
[9] B. Singh, D. Evtyushkin, J. Elwell, R. Riley, and I.Cervesato, “On the detection of kernel-level rootkits using hardware performance counters,” in Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 483-493, 2017.
[10] Arora, Anshul, and Sateesh K. Peddoju. ”Minimizing Network Traffic Features for اندروید Mobile Malware Detection.”Proceedings of the 18th International Conference on Distributed Computing and Networking. ACM, 2017.
[11] Hansen, S.; Larson, M. L.; Stevanovic, M.; Pedersen, J. M. “An Approach for Detection and Family Classification of Malware Based on Behavioral Analysis”; Int. Conf. on Computing, Networking and Communications, 2016.
[12] Imran, M.; Afzal, M. T.; Qadir, M. A.; Xiao, Zh.; Li, K. “Malware Classification using Dynamic Features and Hidden Markov Model”; J. Intell. Fuzzy Syst. 2016, 31, 837.
[13] S. Dash, Suarez-Tangil, K. G, T. S, A. K, K. J. M and L. Cavallaro, "DroidScribe: Classifying اندروید Malware Based on Runtime Behavior," in Mobile Security Technologies (MoST 2016), 2016.
[14] Mohaisen, A.; Alrawi, O.; Mohaisen, M. “AMAL: High-Fidelity, Behavior-Based Automated Malware Analysis and Classification”; Comput. Secur. 2015, 52, 251–266.
[15] S. Dai and A. Tongaonkar and X. Wang and A. Nucci and D.Song, Network Profiler: Towards automatic fingerprinting of اندروید apps, Proceedings IEEE INFOCOM,p809-817, 2013
[16] J. Sahs and L. Khan, "A Machine Learning Approach to اندروید Malware Detection," in European Intelligence and Security Informatics Conference - IEEE, 2012.
[17] G. Dini, F. Martinelli, A. Saracino and D. Sgandurra, "MADAM: a MultiLevel Anomaly Detector for اندروید Malware," Computer Network Security. MMM-ACNS 2012. Springer, vol. 7531, pp. 240-253,2021
[18] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, P. G. Bringas and G. Alvarez, "PUMA: Permission Usage to detect Malware in اندروید," Advances in Intelligent Systems and Computing, vol. 189, no. AISC, pp. 289-298,2020،
[19] Javaheri, D. “A Solution for Recognition and Confronting of Obfuscation and Stealth Techniques of Behavior in Spywares”;Ph.D. Thesis, Islamic Azad University, Science and Research Branch, Tehran, Iran, 2018 (In Persian).
[20] M. Damshenas, A. Dehghantanha, K.-K. R. Choo and R. Mahmud, "M0Droid: An اندروید Behavioral-Based Malware Detection Model," Journal of Information Privacy and Security, vol. 11, no. 3, pp. 141-157 , 2015.
[21] G. Ciaburro and B. Venkateswaran, Neural Networks with R. Packt Publishing, 2017.