[1] G. Litjens, T. Kooi, B. Ehteshami Bejnordi, A. Arindra Adiyoso Setio, F. Ciomp, M. Ghafoorian , J. A W M van der Laak, B. van Ginneken, C. I Sánchez , "A survey on deep learning in medical image analysis." Medical image analysis, vol. 42, pp. 60-88, 2017.
[2] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, M. S. Lew, "Deep learning for visual understanding: A review." Neurocomputing, vol. 187, pp. 27-48, 2016.
[3] A. Mubashir, J. Yang, D. Ai, S. F. Qadri, Y. Wang, "Deep-stacked auto encoder for liver segmentation." Chinese Conference on Image and Graphics Technologies. Springer, Singapore, 2017.
[4] J. Chung, C. Gulcehre, K. Cho, Y. Bengio, "Empirical evaluation of gated recurrent neural networks on sequence modeling." arXiv preprint arXiv:1412.3555, 2014.
[5] Milletari, Fausto, Navab Nassir, and Ahmadi Seyed-Ahmad. "V-net: Fully convolutional neural networks for volumetric medical image segmentation." 2016 Fourth International Conference on 3D Vision (3DV). IEEE, 2016.
[6] Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, pp. 779–788, 2016.
[7] Zhao, Z.-Q.; Zheng, P.; Xu, S.; Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural Netw. Learn. Syst. 2019.
[8] Hui, J. Real-Time Object Detection with YOLO, YOLOv2 and Now YOLOv3. Available online: medium.com/@jonathan_hui/real-time-object-detection-with-YOLO-YOLOv2-28b1b93e2088, 2016.
[9] Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, pp. 7263–7271, 2017.
[10] Redmon, J.; Farhadi, A. YOLOv3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
[11] Kathuria, A. What’s new in YOLO v3? Available online: towardsdatascience.com/YOLO-v3-object-detection-53fb7d3bfe6b, 2019.
[12] S. Al-Emadi, A. Al-Ali, A. Mohammad, A. Al-Ali, “Audio Based Drone Detection and Identification using Deep Learning”, 15th International Wireless Communications & Mobile Computing Conference (IWCMC), pp. 459- 464, 2019.
[13] P. Kosolyudhthasarn, V. Visoottiviseth, D. Fall, Sh. Kashihara, “Drone Detection and Identification by Using Packet Length Signature”, 15th International Joint Conference on Computer Science and Software Engineering (JCSSE), 2018.
[14] D. Lee, W. Gyu La, H. Kim, “Drone Detection and Identification System using Artificial Intelligence”, International Conference on Information and Communication Technology Convergence (ICTC), pp. 1131-1133, 2018.
[15] N. Molina, F. Cabrera, V. Araña, M. Tichavska, B.P. Dorta, J.A. Godoy, “A wireless method for drone identification and monitoring using AIS technology”, 2nd URSI Atlantic Radio Science Meeting (AT-RASC), 2018.
[16] M. Nijim, N. Mantrawadi, “Drone classification and identification system by phenome analysis using data mining techniques”, IEEE Symposium on Technologies for Homeland Security (HST), 2016.
[17] A. Shoufan, H. M. Al-Angari, M. F. Afzal Sheikh, E. Damiani, “Drone Pilot Identification by Classifying Radio-Control Signals”, IEEE Transactions on Information Forensics and Security, 2018.
[18] United States Department of Transportation, “https://www.faa.gov/”, 2019.