[1] Fu Y., Manifold Learning Theory and Applications, London, CRC Press, Taylor Francis, (2012).
[2] Guo, Z.; Zhang, Y.; Lin, Z. & Feng, D, A Method Based on Geometric Invariant Feature for 3D Face Recognition, Proceedings of Fifth International Conference on Image and Graphics, (2009).
[3] Huang Di., Ardabilian M.; Wang, Y. & Chen, L. Automatic Asymmetric 3D-2D Face Recognition, International Conference on Pattern Recognition, (2010).
[4] Maesschalck R. De, Jouan-Rimbaud D., Massart D.L., The Mahalanobis distance, Chemometrics and Intelligent Laboratory Systems, Volume 50, Issue 1 Pages 1-18, https://doi.org/10.1016/S0169-7439(99)00047-7, (2000).
[5] Myung G. K., Multivariate outliers and decompositions of Mahalanobis distance, Communications in Statistics - Theory and Methods, 29:7, 1511-1526, DOI: 10.1080/03610920008832559 (2000).
[6] Weinberger K. Q., Saul L. K., An Introduction to Nonlinear Dimensionality Reduction by Maximum Variance Unfolding, American Association for Artificial Intelligence, (2006).
[7] Xiao H., Huang M., Zhu X, From One Point to A Manifold: Knowledge Graph Embedding for Precise Link Prediction, arXiv:1512.04792v5, (2017).