[1] M. A. Goodrich, B. S. Morse, C. Engh, J. L. Cooper, and J. A. J. I. S. Adams, “Towards using unmanned aerial vehicles (UAVs) in wilderness search and rescue: Lessons from field trials,” vol. 10, no. 3, pp. 453-478, 2009.##
[2] S. J. A. P. Bartczak, “Identifying barriers to knowledge management in the United States military,” p. 343, 2002.##
[3] X. Ge, F. Yang, and Q.-L. J. I. S. Han, “Distributed networked control systems: A brief overview,” vol. 380, pp. 117-131, 2017.##
[4] W. Ren, “Consensus seeking, formation keeping, and trajectory tracking in multiple vehicle cooperative control,” 2004.##
[5] Q. Yang, M. Cao, H. G. de Marina, H. Fang, J. J. S. Chen, and C. Letters, “Distributed formation tracking using local coordinate systems,” vol. 111, pp. 70-78, 2018.##
[6] H. Yu, P. Shi, C.-C. Lim, and D. Wang, “Formation control for multi-robot systems with collision avoidance,” International Journal of Control, pp. 1-12, 2018.##
[7] J. Qin, Q. Ma, Y. Shi, and L. J. I. T. o. I. E. Wang, “Recent advances in consensus of multi-agent systems: A brief survey,” vol. 64, no. 6, pp. 4972-4983, 2017.##
[8] K.-K. Oh, M.-C. Park, and H.-S. J. A. Ahn, “A survey of multi-agent formation control,” vol. 53, pp. 424-440, 2015.##
[9] M. Peymankar, P. Ranjbar, A. Izadipour and S. Balouchian, “Modelling and Solving the Location Problem of Fire Launching Sites %J Electronic and Cyber Defense,” vol. 6, no. 3, pp. 45-57, 2018.##
[10] A. Nedic and A. Ozdaglar, “Distributed Subgradient Methods for Multi-Agent Optimization,” IEEE Transactions on Automatic Control, vol. 54, no. 1, pp. 48-61, 2009.##
[11] I. Lobel and A. Ozdaglar, “Distributed subgradient methods for convex optimization over random networks,” IEEE Transactions on Automatic Control, vol. 56, no. 6, pp. 1291-1306, 2011.##
[12] H. Terelius, U. Topcu, and R. M. Murray, “Decentralized multi-agent optimization via dual decomposition,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 11245-11251, 2011.##
[13] F. Farokhi, I. Shames, and K. H. Johansson, “Distributed MPC via dual decomposition and alternative direction method of multipliers, in Distributed model predictive control made easy: Springer, 2014, pp. 115-131.##
[14] G. N. Droge, “Behavior-based model predictive control for networked multi-agent systems,” Georgia Institute of Technology, 2014.##
[15] J.-P. Richard, “Time-delay systems: an overview of some recent advances and open problems,” automatica, vol. 39, no. 10, pp. 1667-1694, 2003.##
[16] M. G. Rabbat and R. D. Nowak, “Quantized incremental algorithms for distributed optimization,” IEEE Journal on Selected Areas in Communications, vol. 23, no. 4, pp. 798-808, 2005.##
[17] S.-I. Niculescu, “Delay effects on stability: a robust control approach,” Springer Science & Business Media, 2001.##
[18] W. Xu, J. Cao, M. Xiao, D. W. Ho, and G. Wen, “A new framework for analysis on stability and bifurcation in a class of neural networks with discrete and distributed delays,” IEEE transactions on cybernetics, vol. 45, no. 10, pp. 2224-2236, 2015.##
[19] J. Li, G. Li, Z. Wu, and C. J. O. L. Wu, “Stochastic mirror descent method for distributed multi-agent optimization,” vol. 12, no. 6, pp. 1179-1197, 2018.##
T. Hatanaka, N. Chopra, T. Ishizaki, and N. J. I. T. o. A. C. Li, “Passivity-based distributed optimization with communication delays using PI consensus algorithm,” vol. 63, no. 12, pp. 4421-4428, 2018.##
[21] S. Yang, Q. Liu, J. J. I. T. S. Wang, Man, and C. Systems, “Distributed Optimization Based on a Multiagent System in the Presence of Communication Delays,” vol. 47, no. 5, pp. 717-728, 2017.##
[22] M. R. Davoodi et al., “An Overview of Cooperative and Consensus Control of Multiagent Systems,” pp. 1-35, 1999.##
[23] A. Abdessameud and A. J. A. Tayebi, “Formation control of VTOL unmanned aerial vehicles with communication delays,” vol. 47, no. 11, pp. 2383-2394, 2011.##
[24] J. Zhou, Q. Hu, Y. Zhang, and G. Ma, “Decentralised adaptive output feedback synchronisation tracking control of spacecraft formation flying with time-varying delay,” IET Control Theory & Applications, vol. 6, no. 13, pp. 2009-2020, 2012.##
R. Wang and J. J. C. J. o. A. Liu, “Adaptive formation control of quadrotor unmanned aerial vehicles with bounded control thrust,” vol. 30, no. 2, pp. 807-817, 2017.##
[26] Y. Zou, Z. Zhou, X. Dong, and Z. J. I. A. T. o. M. Meng, “Distributed formation control for multiple vertical takeoff and landing UAVs with switching topologies,” vol. 23, no. 4, pp. 1750-1761, 2018.##
[27] P. Lin, W. Ren, and Y. J. A. Song, “Distributed multi-agent optimization subject to nonidentical constraints and communication delays,” vol. 65, pp. 120-131, 2016.##
[28] D.-H. Kim and J.-H. Kim, “A real-time limit-cycle navigation method for fast mobile robots and its application to robot soccer,” Robotics and Autonomous Systems, vol. 42, no. 1, pp. 17-30, 2003.##