[1] M. Naghibzadeh, “Modeling Workflow of Tasks and Task Interaction Graphs to Schedule on the Cloud,” Cloud Computing 2016, p. 81, 2016.##
[2] C. Jianfang, C. Junjie, and Z. Qingshan, “An optimized scheduling algorithm on a cloud workflow using a discrete particle swarm,” Cybernetics and Information Technologies, vol. 14, pp. 25-39, 2014.##
[3] S. Singh and I. Chana, “A survey on resource scheduling in cloud computing: Issues and challenges,” Journal of Grid Computing, vol. 14, pp. 217-264, 2016.##
[4] Sh. Jamali and S. Hourali, “Decentalized load balancer in cloud enviroment by usig multi attribute decision making policy,” Tabriz Journal of Electrical Engineering, pp. 95-106, 2016. (In Persian)##
[5] R. Gupta, “Above the Clouds: A View of Cloud Computing,” Asian Journal of Research in Social Sciences and Humanities, vol. 2, pp. 84-110, 2012.##
[6] H. Abrishami, A. Rezaeian, and M. Naghibzadeh, “Scheduling in hybrid cloud to maintin data privacy,” 20th National CSI Computer Conference, 2015. (In Persian)##
[7] S. Sharif, J. Taheri, A. Y. Zomaya, and S. Nepal, “Mphc: Preserving privacy for workflow execution in hybrid clouds,” in 2013 International Conference on Parallel and Distributed Computing, Applications and Technologies, pp. 272-280, 2013.##
[8] H. Abrishami, A. Rezaeian, and M. Naghibzadeh ,“A novel deadline-constrained scheduling to preserve data privacy in hybrid Cloud,” in Computer and Knowledge Engineering (ICCKE), 2015 5th International Conference on, pp. 234-239, 2015.##
[9] A. Rezaeian, H. Abrishami, S. Abrishami, and M. Naghibzadeh, “A Budget Constrained Scheduling Algorithm for Hybrid Cloud Computing Systems Under Data Privacy,” in Cloud Engineering (IC2E), 2016 IEEE International Conference on, pp. 230-231, 2016.##
[10] H. Chen, X. Zhu, D. Qiu, L. Liu, and Z. Du, “Scheduling for workflows with security-sensitive intermediate data by selective tasks duplication in clouds,” IEEE Transactions on Parallel and Distributed Systems, 2017.##
[11] M. L. Pinedo, “Scheduling: theory, algorithms, and systems,” Springer, 2016.##
[12] F. Wu, Q. Wu, and Y. Tan, “Workflow scheduling in cloud: a survey,” The Journal of Supercomputing, vol. 71, pp. 3373-3418, 2015.##
[13] M. Masdari, S. ValiKardan, Z. Shahi, and S. I. Azar, “Towards workflow scheduling in cloud computing: a comprehensive analysis,” Journal of Network and Computer Applications, vol. 66, pp. 64-82, 2016.##
[14] H. Liu, A. Abraham, V. Snášel, and S. McLoone, “Swarm scheduling approaches for work-flow applications with security constraints in distributed data-intensive computing environments,” Information Sciences, vol. 192, pp. 228-243, 2012.##
[15] W. Liu, S. Peng, W. Du, W. Wang, and G. S. Zeng, “Security-aware intermediate data placement strategy in scientific cloud workflows,” Knowledge and information systems, vol. 41, pp. 423-447, 2014.##
[16] Z. Li, J. Ge, H. Yang, L. Huang, H. Hu, H. Hu, et al., “A security and cost aware scheduling algorithm for heterogeneous tasks of scientific workflow in clouds,” Future Generation Computer Systems, 2016.##
[17] H. Abrishami, A. Rezaeian, and M. Naghibzadeh, “Workflow Scheduling on the Hybrid Cloud to Maintain Data Privacy under Deadline Constraint,” Journal of Intelligent Computing Volume, vol. 6, p. 93, 2015.##
[18] L. F. Bittencourt and E. R. M. Madeira, “HCOC: a cost optimization algorithm for workflow scheduling in hybrid clouds,” Journal of Internet Services and Applications, vol. 2, pp. 207-227, 2011.##
[19] S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Deadline-constrained workflow scheduling algorithms for Infrastructure as a Service Clouds,” Future Generation Computer Systems, vol. 29, pp. 158-169, 2013.##
[20] N. Sooezi, S. Abrishami, and M. Lotfian, “Scheduling Data-Driven Workflows in Multi-cloud Environment,” in Cloud Computing Technology and Science (CloudCom), 2015 IEEE 7th International Conference on, 2015, pp. 163-167.##
[21] D. Fernández-Cerero, A. Jakóbik, D. Grzonka, J. Kołodziej, and A. Fernández-Montes, “Security supportive energy-aware scheduling and energy policies for cloud environments,” Journal of Parallel and Distributed Computing, vol .119 ,pp. 191-202, 2018.##
[22] Y. Wen, J. Liu, W. Dou, X. Xu, B. Cao, and J. Chen, “Scheduling workflows with privacy protection constraints for big data applications on cloud,” Future Generation Computer Systems, 2018.##
[23] A. Abraham, H. Liu, and T.-G. Chang, “Variable neighborhood particle swarm optimization algorithm,” in Genetic and Evolutionary Computation Conference (GECCO-2006), Seattle, USA, 2006.##
[24] P. S. Naidu and B. Bhagat, “Secure workflow scheduling in cloud environment using modified particle swarm optimization with scout adaptation,” International Journal of Modeling, Simulation, and Scientific Computing, vol. 9, p. 1750064, 2018.##
[25] K. Pradeep and T. P. Jacob, “CGSA scheduler: A multi-objective-based hybrid approach for task scheduling in cloud environment,” Information Security Journal: A Global Perspective, vol. 27, pp. 77-91, 2018.##
[26] “Work flow Simulator code,” https://github.com/WorkflowSim.##
[27] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi, “Characterizing and profiling scientific workflows,” Future Generation Computer Systems, vol. 29, pp. 682-692, 2013.##
[28] A. Mohsenzadeh, H. Motameni, J. Vahidi, “A fuzzy trust evaluation mode to enhance security of cloud system entities with petri net,” Journal of Electonic and Cyber Defence, vol. 4, 2016. (In Persian)##
[29] M. Naghibzadeh, “Modeling and scheduling hybrid workflows of tasks and task interaction graphs on the cloud,” Future Generation Computer Systems, vol. 65, pp. 33-45, 2016.##