یک الگوریتم پویای فراابتکاری برای بیشینه‌سازی نفوذ در شبکه‌های اجتماعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، گروه کامپیوتر، واحد میانه، دانشگاه آزاد اسلامی، میانه، ایران

2 استاد، گروه کامپیوتر، واحد میانه، دانشگاه آزاد اسلامی، میانه، ایران

3 استادیار، گروه کامپیوتر، واحد میانه، دانشگاه آزاد اسلامی، میانه، ایران

چکیده

در دهه گذشته، مردم زمان زیادی را در شبکه‌های اجتماعی برای تعامل با دوستان و به اشتراک گذاری اطلاعات، افکار، اخبار و غیره صرف می‌کنند. این شبکه‌های اجتماعی بخش مهمی از زندگی روزمره ما را تشکیل می‌دهند. با بهره‌برداری از توسعه شبکه‌های اجتماعی، یافتن افراد تأثیرگذار در یک شبکه‌ی اجتماعی کاربردهای عملی زیادی در بازاریابی، سیاست و حتی کنترل بیماری‌ها دارد. در این مقاله، روش جدیدی‌ با عنوان الگوریتم کرکس توسعه‌یافته پویا برای حل مسئله بیشینه‌سازی نفوذ ارائه کرده‌ایم. با توجه به این نکته که در دنیای واقعی، شبکه‌های اجتماعی ماهیت بسیار پویا و مقیاس‌پذیر دارند. در الگوریتم پیشنهادی ما دو معیار مهم که در کارهای انجام شده قبلی کمتر مورد توجه قرار گرفته است را در نظر می‌گیریم. یکی تغییر ساختار شبکه در طول زمان و دیگری مقیاس‌پذیری است. الگوریتم پیشنهادی روی مجموعه داده‌های استاندارد مورد ارزیابی قرارگرفته شده است. نتایج به دست آمده نشان می‌دهد که الگوریتم پیشنهادی به دلیل کاهش فضای جستجو و استفاده از چندین مکانیسم مختلف و متفاوت در مراحل اکتشاف و بهره‌وری و ایجاد تعادل و گذار بین این مراحل نسبت به دیگر الگوریتم‌های مورد مقایسه، مقیاس‌پذیرتر بوده و از دقت بالاتری در پیدا کردن رئوس بانفوذ در این شبکه‌ها را برخوردار است.

کلیدواژه‌ها


Smiley face

[1]          N. Hafiene, W. Karoui, and L. B. Romdhane, "Influential nodes detection in dynamic social networks: A survey," Expert Systems with Applications, vol. 159, p. 113642, 2020.
[2]    J. J. Lotf, M. A. Azgomi, and M. R. E. Dishabi, "An improved influence maximization method for social networks based on genetic algorithm," Physica A: Statistical Mechanics and its Applications, vol. 586, p. 126480, 2022.
[3]          D. Kempe, J. Kleinberg, and É. Tardos, "Maximizing the spread of influence through a social network," in Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, 2003, pp. 137-146: ACM.
[4]          Z. Aghaee and S. Kianian, "Efficient influence spread estimation for influence maximization," Social Network Analysis and Mining, vol. 10, no. 1, pp. 1-21, 2020.
[5]    H. A. Beni, Z. Aghaee, A. Bouyer, and M. Vahidipour, "IMT: selection of top-k nodes based on the topology structure in social networks," in 2020 6th International Conference on Web Research (ICWR), 2020, pp. 84-88: IEEE.
[6]          Z. Aghaee, H. A. Beni, S. Kianian, and M. Vahidipour, "A heuristic algorithm focusing on the rich-club phenomenon for the influence maximization problem in social networks," in 2020 6th International Conference on Web Research (ICWR), 2020, pp. 119-125: IEEE.
[7]          S. Peng, Y. Zhou, L. Cao, S. Yu, J. Niu, and W. Jia, "Influence analysis in social networks: A survey," Journal of Network and Computer Applications, vol. 106, pp. 17-32, 2018.
[8]          B. Chang, T. Xu, Q. Liu, and E.-H. Chen, "Study on information diffusion analysis in social networks and its applications," International Journal of Automation and Computing, vol. 15, no. 4, pp. 377-401, 2018.
[9]          S. Banerjee, M. Jenamani, and D. K. Pratihar, "A survey on influence maximization in a social network," Knowledge and Information Systems, vol. 62, no. 9, pp. 3417-3455, 2020.
[10]         S. S. Singh, A. Kumar, K. Singh, and B. Biswas, "IM‐SSO: Maximizing influence in social networks using social spider optimization," Concurrency and Computation: Practice and Experience, vol. 32, no. 2, p. e5421, 2020.
[11]                        J. Shang, S. Zhou, X. Li, L. Liu, and H. Wu, "CoFIM: A community-based framework for influence maximization on large-scale networks," Knowledge-Based Systems, vol. 117, pp. 88-100, 2017.
[12]         M. Heidari, M. Asadpour, and H. Faili, "SMG: Fast scalable greedy algorithm for influence maximization in social networks," Physica A: Statistical Mechanics and its Applications, vol. 420, pp. 124-133, 2015.
[13]                        J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance, "Cost-effective outbreak detection in networks," in Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, 2007, pp. 420-429: ACM.
[14]         A. Goyal, W. Lu, and L. V. S. Lakshmanan, "CELF++: optimizing the greedy algorithm for influence maximization in social networks," presented at the Proceedings of the 20th international conference companion on World wide web, Hyderabad, India, 2011. 
[15]         Y. Tang, X. Xiao, and Y. Shi, "Influence maximization: Near-optimal time complexity meets practical efficiency," in Proceedings of the 2014 ACM SIGMOD international conference on Management of data, 2014, pp. 75-86.
[16]         H. T. Nguyen, M. T. Thai, and T. N. Dinh, "A billion-scale approximation algorithm for maximizing benefit in viral marketing," IEEE/ACM Transactions On Networking, vol. 25, no. 4, pp. 2419-2429, 2017.
[17]                        C. Borgs, M. Brautbar, J. Chayes, and B. Lucier, "Maximizing social influence in nearly optimal time," in Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, 2014, pp. 946-957: SIAM.
[18]         W. Chen, Y. Wang, and S. Yang, "Efficient influence maximization in social networks," presented at the Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, Paris, France, 2009. 
[19]         S. Cheng, H. Shen, J. Huang, G. Zhang, and X. Cheng, "Staticgreedy: solving the scalability-accuracy dilemma in influence maximization," in Proceedings of the 22nd ACM international conference on Information & Knowledge Management, 2013, pp. 509-518.
[20]         J. Lv, J. Guo, and H. Ren, "Efficient Greedy Algorithms for Influence Maximization in Social Networks," JIPS, vol. 10, no. 3, pp. 471-482, 2014.
[21]         N. Samadi and A. Bouyer, "Identifying influential spreaders based on edge ratio and neighborhood diversity measures in complex networks," Computing, vol. 101, no. 8, pp. 1147-1175, 2019.
[22]                        J.-X. Zhang, D.-B. Chen, Q. Dong, and Z.-D. Zhao, "Identifying a set of influential spreaders in complex networks," Scientific reports, vol. 6, no. 1, pp. 1-10, 2016.
[23]         K. Berahmand, A. Bouyer, and N. Samadi, "A new local and multidimensional ranking measure to detect spreaders in social networks," Computing, vol. 101, no. 11, pp. 1711-1733, 2019.
[24]         D. Liu, Y. Jing, J. Zhao, W. Wang, and G. Song, "A fast and efficient algorithm for mining top-k nodes in complex networks," Scientific reports, vol. 7, no. 1, pp. 1-8, 2017.
[25]         Z.-L. Luo, W.-D. Cai, Y.-J. Li, and D. Peng, "A pagerank-based heuristic algorithm for influence maximization in the social network," in Recent progress in data engineering and internet technology: Springer, 2012, pp. 485-490.
[26]                        S. Ahajjam and H. Badir, "Identification of influential spreaders in complex networks using HybridRank algorithm," Scientific reports, vol. 8, no. 1, pp. 1-10, 2018.
[27]         L. Qiu, X. Tian, S. Sai, and C. Gu, "LGIM: A global selection algorithm based on local influence for influence maximization in social networks," IEEE Access, vol. 8, pp. 4318-4328, 2019.
[28]         W. Li et al., "Three-hop velocity attenuation propagation model for influence maximization in social networks," World Wide Web, vol. 23, no. 2, pp. 1261-1273, 2020.
[29]         Z. Aghaee and S. Kianian, "Influence maximization algorithm based on reducing search space in the social networks," SN Applied Sciences, vol. 2, no. 12, pp. 1-14, 2020.
[30]         Y. Zhao, S. Li, and F. Jin, "Identification of influential nodes in social networks with community structure based on label propagation," Neurocomputing, vol. 210, no. C, pp. 34-44, 2016.
[31]         F. Ullah and S. Lee, "Identification of influential nodes based on temporal-aware modeling of multi-hop neighbor interactions for influence spread maximization," Physica A: Statistical Mechanics and its Applications, vol. 486, pp. 968-985, 2017.
[32]         D. Cai, Z. Wang, N. Wang, and D. Wei, "A new method for identifying influential nodes based on DS evidence theory," in 2017 29th Chinese Control And Decision Conference (CCDC), 2017, pp. 4603-4609: IEEE.
[33]         E. B. A. Karimi, M. Nemati, M. Saleh Esfehani, "Identifying Influential Nodes in Social Networks by Integrating the Centrality Method and Node Activity," Journal of  Electronical & Cyber Defence, vol. 8, no. 3, pp. 1-11, 2020.(In Persian)
[34]         Q. Jiang, G. Song, C. Gao, Y. Wang, W. Si, and K. Xie, "Simulated annealing based influence maximization in social networks," in Twenty-fifth AAAI conference on artificial intelligence, 2011.
[35]         C.-W. Tsai, Y.-C. Yang, and M.-C. Chiang, "A genetic newgreedy algorithm for influence maximization in social network," in 2015 IEEE International Conference on Systems, Man, and Cybernetics, 2015, pp. 2549-2554: IEEE.
[36]         M. Gong, J. Yan, B. Shen, L. Ma, and Q. Cai, "Influence maximization in social networks based on discrete particle swarm optimization," Information Sciences, vol. 367, pp. 600-614, 2016.
[37]                        L. Cui et al., "DDSE: A novel evolutionary algorithm based on degree-descending search strategy for influence maximization in social networks," Journal of Network and Computer Applications, vol. 103, pp. 119-130, 2018.
[38]         J. Tang et al., "Maximizing the spread of influence via the collective intelligence of discrete bat algorithm," Knowledge-Based Systems, vol. 160, pp. 88-103, 2018.
[39]         B. Abdollahzadeh, F. S. Gharehchopogh, and S. Mirjalili, "African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems," Computers & Industrial Engineering, vol. 158, p. 107408, 2021.
[40]         J. Tang, R. Zhang, P. Wang, Z. Zhao, L. Fan, and X. Liu, "A discrete shuffled frog-leaping algorithm to identify influential nodes for influence maximization in social networks," Knowledge-Based Systems, vol. 187, p. 104833, 2020.
[41]         B. Abdollahzadeh, F. Soleimanian Gharehchopogh, and S. Mirjalili, "Artificial gorilla troops optimizer: a new nature‐inspired metaheuristic algorithm for global optimization problems," International Journal of Intelligent Systems, vol. 36, no. 10, pp. 5887-5958, 2021.
[42]         S. A. Myers and J. Leskovec, "The bursty dynamics of the twitter information network," in Proceedings of the 23rd international conference on World wide web, 2014, pp. 913-924.
[43]         D. Kempe, J. Kleinberg, and É. Tardos, "Maximizing the spread of influence through a social network," Theory of Computing, vol. Volume 11, p. 42, 2015.
[44]                        H. Shayanfar and F. S. Gharehchopogh, "Farmland fertility: A new metaheuristic algorithm for solving continuous optimization problems," Applied Soft Computing, vol. 71, pp. 728-746, 2018.
[45]         E. Cohen, D. Delling, T. Pajor, and R. F. Werneck, "Computing classic closeness centrality, at scale," presented at the Proceedings of the second ACM conference on Online social networks, Dublin, Ireland, 2014.Available: https://doi.org/10.1145/2660460.2660465
[46]         M. Riondato and E. M. Kornaropoulos, "Fast approximation of betweenness centrality through sampling," Data Mining and Knowledge Discovery, vol. 30, no. 2, pp. 438-475, 2016.
[47]         H. Kingi et al., "A numerical evaluation of the accuracy of influence maximization algorithms," Social Network Analysis and Mining, vol. 10, no. 1, p. 70, 2020/08/24 2020.
[48]         J. K. David Kempe, and Éva Tardos, "Maximizing the Spread of Influence through a Social Network," Theory of Computing, vol. Volume 11 pp. 105-147, April 22, 2015.
دوره 11، شماره 2 - شماره پیاپی 42
شماره پیاپی 42، فصلنامه تابستان
تیر 1402
صفحه 57-69
  • تاریخ دریافت: 11 مرداد 1401
  • تاریخ بازنگری: 08 بهمن 1401
  • تاریخ پذیرش: 10 بهمن 1401
  • تاریخ انتشار: 01 تیر 1402