[1] R. Zekavat and R. M. Buehrer, “Handbook of position location: Theory, practice and advances,” John Wiley & Sons, 2011.
[2] H. Krim and M. Viberg, “Two decades of array signal processing research: the parametric approach,” IEEE signal processing magazine, vol. 13, no. 4, pp. 67-94, 1996.
[3] R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE transactions on antennas and propagation, vol. 34, no. 3, pp. 276-280, 1986.
[4] R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters via rotational invariance techniques,” IEEE Transactions on acoustics, speech, and signal processing, vol. 37, no. 7, pp. 984-995, 1989.
[5] R. J. Kozick and B. M. Sadler, “Maximum-likelihood array processing in non-Gaussian noise with Gaussian mixtures,” IEEE Transactions on Signal Processing, vol. 48, no. 12, pp. 3520-3535, 2000.
[6] R. J. Kozick and B. M. Sadler, “Robust subspace estimation in non-Gaussian noise,” In Acoustics, Speech, and Signal Processing, 2000. ICASSP'00. Proceedings. 2000 IEEE International Conference on :IEEE, vol. 6, pp. 3818-3821, 2000.##
[7] D. D. Lee and R. L. Kashyap, “Robust maximum likelihood bearing estimation in contaminated Gaussian noise,” IEEE Transactions on signal processing, vol. 40, no. 8, pp. 1983-1986, 1992.##
[8] W.-J. Zeng, H.-C. So, and L. Huang, “Sell _ SS-MUSIC: Robust Direction-of-Arrival Estimator for Impulsive Noise Environments,” IEEE Transactions on Signal Processing, vol. 61, no. 17, pp. 4296-4308, 2013.##
[9] P. Tsakalides and C. L. Nikias, “The robust covariation-based MUSIC (ROC-MUSIC) algorithm for bearing estimation in impulsive noise environments,” IEEE Transactions on Signal Processing, vol. 44, no. 7, pp. 1623-1633, 1996.##
[10] T.-H. Liu and J. M. Mendel, “ A subspace-based direction finding algorithm using fractional lower order statistics,” IEEE Transactions on Signal Processing, vol. 49, no. 8, pp. 1605-1613, 2001.##
[11] S. Visuri, H. Oja, and V. Koivunen, “Subspace-based direction-of-arrival estimation using nonparametric statistics,” IEEE Transactions on Signal Processing, vol. 49, no. 9, pp. 2060-2073, 2001.##
[12] X. Jiang, W.-J. Zeng, H.-C. So, A. M. Zoubir, and T. Kirubarajan, “Beamforming via Nonconvex Linear Regression,” IEEE Trans. Signal Processing, vol. 64, no. 7, pp. 1714-1728, 2016.##
[13] F. Wen and H. C. So, “Robust multi-dimensional harmonic retrieval using iteratively reweighted HOSVD,” IEEE Signal Processing Letters, vol. 22, no. 12, pp. 2464-2468, 2015.##
[14] T.-J. Shan, M. Wax, and T. Kailath, “On spatial smoothing for direction-of-arrival estimation of coherent signals,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 33, no. 4, pp. 806-811, 1985.##
[15] W. Woo, S. Dlay, A. Al-Tmeme, and B. Gao, “ Reverberant signal separation using optimized complex sparse nonnegative tensor deconvolution on spectral covariance matrix,” Digital Signal Processing, vol. 83, pp. 9-23, 2018.##
[16] D. L. Donoho, “Compressed sensing,” IEEE Transactions on information theory, vol. 52, no. 4, pp. 1289-1306, 2006.##
[17] E. J. Candes, “The restricted isometry property and its implications for compressed sensing,” Comptes rendus mathematique, vol. 346, no. 9-10, pp. 589-592, 2008.##
[18] E. BouDaher, F. Ahmad, M. G. Amin, and A. Hoorfar, “Mutual coupling effect and compensation in non-uniform arrays for direction-of-arrival estimation,” Digital Signal Processing, vol. 61, pp. 3-14, 2017.##
[19] M. R. Mousavi and M. Kaveh, “Covert and Secure Underwater Acoustic Communication using Merkle Hash Tree and Dolphin histle,” Journal of Electronical & Cyber Defence, vol. 6, no. 2, pp. 135-146, 2017.(In Persian)##
[20] F. Chen, J. Dai, N. Hu, and Z. Ye, “Sparse Bayesian learning for off-grid DOA estimation with nested arrays,” Digital Signal Processing, vol. 82, pp. 187-193, 2018.##
[21] Z. Q. He, Z. P .Shi, L. Huang, and H. C. So, “ Underdetermined DOA Estimation for Wideband Signals Using Robust Sparse Covariance Fitting,” IEEE Signal Processing Letters, vol. 22, no. 4, pp. 435-439, 2015.##
[22] C. Zhou, Y. Gu, X. Fan, Z. Shi, G. Mao, and Y. D. Zhang, “Direction-of-arrival estimation for coprime array via virtual array interpolation,” IEEE Transactions on Signal Processing, vol. 66, no. 22, pp. 5956-5971, 2018.##
[23] J. Cai, D. Bao, and P. Li, “DOA estimation via sparse recovering from the smoothed covariance vector,” Journal of Systems Engineering and Electronics, vol. 27, no. 3, pp. 555-561, 2016.##
[24] C.-L. Liu and P. Vaidyanathan, “Cramér–Rao bounds for coprime and other sparse arrays, which find more sources than sensors,” Digital Signal Processing, vol. 61, pp. 43-61, 2017.##
[25] H. Huang, B. Liao, C. Guo, and J. Huang, “ Sparse representation based DOA estimation using a modified nested linear array,” In Radar Conference (RadarConf18):IEEE, pp. 0919-0922, 2018.##
[26] P. Stoica and A. Nehorai, “MUSIC, maximum likelihood, and Cramer-Rao bound,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 37, no. 5, pp. 720-741, 1989.##
[27] P. Pal and P. Vaidyanathan, “Nested arrays: A novel approach to array processing with enhanced degrees of freedom,” IEEE Transactions on Signal Processing, vol. 58, no. 8, pp. 4167-4181, 2010.##
[28] K. Han and A. Nehorai, “Improved source number detection and direction estimation with nested arrays and ULAs using jackknifing,” IEEE Transactions on Signal Processing, vol. 61, no. 23, pp. 6118-6128, 2013.##
[29] P. P. Vaidyanathan and P. Pal, “Sparse sensing with co-prime samplers and arrays,” IEEE Transactions on Signal Processing, vol. 59, no. 2, pp. 573-586, 2011.##
[30] A. Moffet, “Minimum-redundancy linear arrays,” IEEE Transactions on antennas and propagation, vol. 16, no. 2, pp. 172-175, 1968.##
[31] J. Arsac and A. Danjon, “Nouveau Reseau Pour Lobservation Radio Astronomiqe De Labrillance Sur Le Soleil A 9 35O MC-S,” Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences, vol. 240, no. 9, pp. 942-945, 1955.##
[32] J. Leech, “On the Representation of 1, 2, …, n by Differences,” Journal of the London Mathematical Society, vol. s1-31, no. 2, pp. 160-169, 1956.##
[33] X. Zhang, X. Liu, H. Yu, and C. Liu, “Improved MUSIC algorithm for DOA estimation of coherent signals via toeplitz and fourth-order-cumulants,” International Journal of Control and Automation, vol. 8, no. 10, pp. 261-272, 2015.##