جهت‌یابی منابع همبسته آکوستیکی با آرایه خطی تودرتو بر مبنای حل اسپارس

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشگاه جامع امام حسین(ع)

2 دانشیار، دانشگاه جامع امام حسین(ع)

3 استاد، دانشگاه شیراز

4 استادیار، دانشگاه تهران

چکیده

جهت‌یابی منابع آکوستیکی در بسیار از کاربردهای صنعتی و نظامی از اهمیت ویژه­ای برخوردار است. الگوریتم‌های زیادی تاکنون برای حل این مساله پیشنهاد شده­اند اما شرایط گوناگون و پیچیده‌ای که محیط واقعی به فرضیات مساله اعمال می­نماید باعث شده که همچنان در برخی شرایط، راه حلی برای جهت‌یابی منابع آکوستیکی به‌صورت پایدار و بادقت دلخواه وجود نداشته باشد یکی از این موارد، یافتن جهت منابع آکوستیکی، در محیط های پرانعکاس مانند آب‌های کم عمق دریا است. در این شرایط منابع مجازی زیادی به‌وجود می­آیندکه در واقع کپی منابع مستقل بوده و قابل شناسایی و حذف نیستند. زمانی که تعداد این انعکاس‌ها از تعداد حسگرهای آرایه بیشتر شود، فرضیات روش‌های مرسوم جهت­یابی، اقناع نشده و قابل به‌کارگیری نمی­باشند. در این شرایط با مساله­ تعداد منابع، بیشتر از تعداد حسگرها (فرومعین)، روبرو هستیم. یک ایده مهم برای مقابله با این تاثیر چند مسیرگی، افزایش درجه آزادی آرایه سوناری است که می‌تواند بر مبنای آرایه‌های اسپارس حل شود. در واقع با به‌کارگیری آرایه MRA تعداد حسگرهای آرایه واقعی، به‌طور مجازی افزایش یافت به‌طوری‌که مساله به شرایط عادی (فرامعین) برگردد در این ایده ماتریس منیفولد آرایه طوری اصلاح گردید که متناسب با آرایه‌های غیریکنواخت اسپارس باشد. شبیه‌سازی­ها به‌خوبی عملکرد الگوریتم را در حضور منابع همبسته، قابلیت‌های تفکیک زاویه‌ای و میزان خطای کمتر را تایید می‌نماید به‌طوری‌که با 6 حسگر واقعی در آرایه، الگوریتم توانست 12 منبع اعم از همبسته و مستقل را جهت‌یابی کند در عین حال روش ارائه‌شده از روش‌های مقایسه شده بهتر بوده و بسیار به حد CRLB نزدیک می‌شود.

کلیدواژه‌ها


[1]           R. Zekavat and R. M. Buehrer, “Handbook of position location: Theory, practice and advances,” John Wiley & Sons, 2011.

[2]           H. Krim and M. Viberg, “Two decades of array signal processing research: the parametric approach,” IEEE signal processing magazine, vol. 13, no. 4, pp. 67-94, 1996.

[3]           R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE transactions on antennas and propagation, vol. 34, no. 3, pp. 276-280, 1986.

[4]           R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters via rotational invariance techniques,” IEEE Transactions on acoustics, speech, and signal processing, vol. 37, no. 7, pp. 984-995, 1989.

[5]           R. J. Kozick and B. M. Sadler, “Maximum-likelihood array processing in non-Gaussian noise with Gaussian mixtures,” IEEE Transactions on Signal Processing, vol. 48, no. 12, pp. 3520-3535, 2000.

[6]           R. J. Kozick and B. M. Sadler, “Robust subspace estimation in non-Gaussian noise,” In Acoustics, Speech, and Signal Processing, 2000. ICASSP'00. Proceedings. 2000 IEEE International Conference on :IEEE, vol. 6, pp. 3818-3821, 2000.##

[7]           D. D. Lee and R. L. Kashyap, “Robust maximum likelihood bearing estimation in contaminated Gaussian noise,” IEEE Transactions on signal processing, vol. 40, no. 8, pp. 1983-1986, 1992.##

[8]           W.-J. Zeng, H.-C. So, and L. Huang, “Sell _ SS-MUSIC: Robust Direction-of-Arrival Estimator for Impulsive Noise Environments,” IEEE Transactions on Signal Processing, vol. 61, no. 17, pp. 4296-4308, 2013.##

[9]           P. Tsakalides and C. L. Nikias, “The robust covariation-based MUSIC (ROC-MUSIC) algorithm for bearing estimation in impulsive noise environments,” IEEE Transactions on Signal Processing, vol. 44, no. 7, pp. 1623-1633, 1996.##

[10]         T.-H. Liu and J. M. Mendel, “ A subspace-based direction finding algorithm using fractional lower order statistics,” IEEE Transactions on Signal Processing, vol. 49, no. 8, pp. 1605-1613, 2001.##

[11]         S. Visuri, H. Oja, and V. Koivunen,     “Subspace-based direction-of-arrival estimation using nonparametric statistics,” IEEE Transactions on Signal Processing, vol. 49, no. 9, pp. 2060-2073, 2001.##

[12]         X. Jiang, W.-J. Zeng, H.-C. So, A. M. Zoubir, and T. Kirubarajan, “Beamforming via Nonconvex Linear Regression,” IEEE Trans. Signal Processing, vol. 64, no. 7, pp. 1714-1728, 2016.##

[13]         F. Wen and H. C. So, “Robust multi-dimensional harmonic retrieval using iteratively reweighted HOSVD,” IEEE Signal Processing Letters, vol. 22, no. 12, pp. 2464-2468, 2015.##

[14]         T.-J. Shan, M. Wax, and T. Kailath, “On spatial smoothing for direction-of-arrival estimation of coherent signals,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 33, no. 4, pp. 806-811, 1985.##

[15]         W. Woo, S. Dlay, A. Al-Tmeme, and B. Gao, “ Reverberant signal separation using optimized complex sparse nonnegative tensor deconvolution on spectral covariance matrix,” Digital Signal Processing, vol. 83, pp. 9-23, 2018.##

[16]         D. L. Donoho, “Compressed sensing,” IEEE Transactions on information theory, vol. 52, no. 4, pp. 1289-1306, 2006.##

[17]         E. J. Candes, “The restricted isometry property and its implications for compressed sensing,” Comptes rendus mathematique, vol. 346, no.     9-10, pp. 589-592, 2008.##

[18]         E. BouDaher, F. Ahmad, M. G. Amin, and A. Hoorfar, “Mutual coupling effect and compensation in non-uniform arrays for direction-of-arrival estimation,” Digital Signal Processing, vol. 61, pp. 3-14, 2017.##

[19]       M. R. Mousavi and M. Kaveh, “Covert and Secure Underwater Acoustic Communication using Merkle Hash Tree and Dolphin histle,” Journal of Electronical & Cyber Defence, vol. 6, no. 2, pp. 135-146, 2017.(In Persian)##

[20]         F. Chen, J. Dai, N. Hu, and Z. Ye, “Sparse Bayesian learning for off-grid DOA estimation with nested arrays,” Digital Signal Processing, vol. 82, pp. 187-193, 2018.##

[21]         Z. Q. He, Z. P .Shi, L. Huang, and H. C. So, “ Underdetermined DOA Estimation for Wideband Signals Using Robust Sparse Covariance Fitting,” IEEE Signal Processing Letters, vol. 22, no. 4, pp. 435-439, 2015.##

[22]         C. Zhou, Y. Gu, X. Fan, Z. Shi, G. Mao, and Y. D. Zhang, “Direction-of-arrival estimation for coprime array via virtual array interpolation,” IEEE Transactions on Signal Processing, vol. 66, no. 22, pp. 5956-5971, 2018.##

[23]         J. Cai, D. Bao, and P. Li, “DOA estimation via sparse recovering from the smoothed covariance vector,” Journal of Systems Engineering and Electronics, vol. 27, no. 3, pp. 555-561, 2016.## 

[24]         C.-L. Liu and P. Vaidyanathan, “Cramér–Rao bounds for coprime and other sparse arrays, which find more sources than sensors,” Digital Signal Processing, vol. 61, pp. 43-61, 2017.##

[25]         H. Huang, B. Liao, C. Guo, and J. Huang, “ Sparse representation based DOA estimation using a modified nested linear array,” In Radar Conference (RadarConf18):IEEE, pp.          0919-0922, 2018.##

[26]         P. Stoica and A. Nehorai, “MUSIC, maximum likelihood, and Cramer-Rao bound,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 37, no. 5, pp. 720-741, 1989.##

[27]         P. Pal and P. Vaidyanathan, “Nested arrays: A novel approach to array processing with enhanced degrees of freedom,” IEEE Transactions on Signal Processing, vol. 58, no. 8, pp. 4167-4181, 2010.##

[28]         K. Han and A. Nehorai, “Improved source number detection and direction estimation with nested arrays and ULAs using jackknifing,” IEEE Transactions on Signal Processing, vol. 61, no. 23, pp. 6118-6128, 2013.##

[29]         P. P. Vaidyanathan and P. Pal, “Sparse sensing with co-prime samplers and arrays,” IEEE Transactions on Signal Processing, vol. 59, no. 2, pp. 573-586, 2011.##

[30]         A. Moffet, “Minimum-redundancy linear arrays,” IEEE Transactions on antennas and propagation, vol. 16, no. 2, pp. 172-175, 1968.##

[31]         J. Arsac and A. Danjon, “Nouveau Reseau Pour Lobservation Radio Astronomiqe De Labrillance Sur Le Soleil A 9 35O MC-S,” Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences, vol. 240, no. 9, pp. 942-945, 1955.##

[32]         J. Leech, “On the Representation of 1, 2, …, n by Differences,” Journal of the London Mathematical Society, vol. s1-31, no. 2, pp.   160-169, 1956.##

[33]         X. Zhang, X. Liu, H. Yu, and C. Liu, “Improved MUSIC algorithm for DOA estimation of coherent signals via toeplitz and fourth-order-cumulants,” International Journal of Control and Automation, vol. 8, no. 10, pp. 261-272, 2015.##