ردیابی اهداف مانور بالا مبتنی بر روش حالت افزوده با استفاده از فیلتر کالمن خنثی تطبیقی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار موسسه آموزش عالی خراسان

2 دانشجوی کارشناسی ارشد، موسسه آموزش عالی خراسان

چکیده

بسیاری از روش­های ردیابی اهداف راداری مانور بالا مانند روش حالت افزوده بر اساس شبیه­سازی معادلات حرکت هدف و رادار در مختصات کارتزین صورت می­پذیرند. در محیط عملیاتی همراه با اختلال­های نویزی، ردیابی اهداف راداری به خصوص در مانورهای بالا که هدف در حال دور شدن از محل استقرار رادار است، خطای اندازه­گیری رادار روی محورهای کارتزین دائما رو به افزایش بوده در صورتی­که در بسیاری از مقالات، خطای مشاهدات با کواریانس ثابتی روی محورهای مختصات کارتزین لحاظ می­گردد. از طرفی بردار واقعی مشاهدات رادار شامل فاصله و زاویه سمت هدف در مختصات قطبی بوده و مدل­سازی این مشاهدات در این مختصات باعث غیرخطی شدن روابط می­شود و نیاز به روش­های تخمین غیرخطی مانند فیلتر کالمن خنثییا توسعه­یافته را ایجاد می­نماید. روش پیشنهادی در این مقاله با به­کارگیری ایده حالت افزوده در مختصات قطبی به رهگیری اهداف راداری مانور بالا بر اساسفیلتر کالمن خنثی می­پردازد روش پیشنهادی با به­کارگیری الگوریتم تطبیق ماتریس کواریانس تخمین در هر مرحله، معضل همگرایی دیرهنگام فیلتر را برطرف نموده و از واگرایی آن جلوگیری می­نماید. نتایج شبیه­سازی در سناریوهای مانور متوسط و بالا بر اساس روش پیشنهادی نسبت به دو روش فیلتر کالمن خنثیو توسعه­یافته، بهبود بیش از 90 درصدی را نشان می­دهد.

کلیدواژه‌ها


[1]     Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, “Estimation with Applications to Tracking and Navigation: Theory, Algorithms, and Software,” Wiley: New York, NY, USA, 2001.##
[2]     T. C. Wang and P. K. Varshney, “A tracking algorithm for maneuvering targets,” IEEE Trans. Aerosp. Electron. Syst., vol. 29, no. 3, pp. 910–924, 1993.##
[3]     R. A. Singer, “Estimating optimal tracking filter performance for manned maneuvering targets,” IEEE T. Aerosp. Electron. Syst., vol. 6, pp. 473–483, 1970.##
[5]     H. Zhou and K. S. P. Kumar, “A “current” statistical model and adaptive algorithm for estimating maneuvering targets,” AIAA J. Guid., pp. 596–602, 1984.##
[6]     J. D. Kendrick, P. S. Maybeck, and J. G. Reid, “Estimation of aircraft target motion using orientation measurements,” IEEE Trans. Aerosp. Electron. Syst., vol. 17, pp. 254–260, 1981. ##
[7]     X. R. Li and V. P. Jilkov, “A survey of maneuvering target tracking-Part VIa: Density-based exact nonlinear filtering,” SPIE Defense Secur. Sens. Int. Soc. Opt. Photon., 2010.##
[8]     P. S. Maybeck, W. H. Worsley, and P. M. Flynn, “Investigation of constant turn-rate dynamics models in filters for airborne vehicle tracking. Proc. NAECON, pp. 896–903, 1982.##
[9]     Y. Bar-Shalom, “Multitarget-Multisensor Tracking: Advanced Applications,” Artech House: Norwood, MA, USA, 1990.##
[10]  G. Zhai, H. Meng, and X. Wang, “A Constant Speed Changing Rate and Constant Turn Rate Model for Maneuvering Target Tracking,” Sensors, vol. 14, no. 3, pp. 5239-5253, 2014.##
[11]  Y. Yang, J. Nan, S. Wang, Z. Zhuo, X. Fan, and J. Huang, “AFAKF for manoeuvring target tracking based on current statistical model,” IET Science, Measurement & Technology, vol. 10, no. 6, pp. 637-643, 2016.##
[12]  A. Karsaz and H. Khaloozadeh, “An optimal two-stage algorithm for highly maneuvering targets tracking,” Signal Processing, vol. 89, pp. 532-547, 2009.##
[13]  R. Tou and J. Zhang, “IMM approach to state estimation for systems with delayed measurements,” IET Signal Processing, vol. 10, no. 7, pp. 752-757, 2016.##
[14]  X. R. Li and V. P. Jilkov, “Survey of maneuvering target tracking,” Part I. Dynamic models, IEEE T. Aero. Elec. Sys., vol. 39, pp. 1333–1364, 2003. ##
[15]  M. Dahmani, A. Meche, M. Keche, and K. Abed-Meraim, “An improved fuzzy alpha-beta filter for tracking a highly maneuvering target,” Aerospace Science and Technology, vol. 58, pp. 298–305, 2016.##
[16]  A. Meche, M. Dahmani, M. Keche, and A. Ouamri, “Pseudo steady state filters for target tracking with polar measurements,” Aerospace Science & Technology, vol. 43, pp. 14–15, 2015.##
[18]  H. Khaloozadeh and A. Karsaz, “Modified input estimation technique for tracking manoeuvring targets,” IET Radar Sonar Navig., vol. 3, no. 1, pp. 30–41, 2009.##
[19]  R. E. Kalman, “A new approach to linear filtering and prediction problem,” Trans. of the ASME, Journal of Basic Engineering, 1960.##
[21]  J. Korn, S. W. Gully, and A. S.  Willsky, “Application of the generalized likelihood ratio algorithm to maneuver detection and estimation,” In Proc. American Control Conference, pp. 792-798, 1982.##
[22]  X. Lin, T. Kirubarajan, Y. Bar-Shalom, and S. Maskell, “Comparison of EKF, pseudomeasurement and particle filters for a bearing-only target tracking problem,” IEEE Trans. Aerosp. Electron.  Syst., 2002.##
[23]  P. R. Mahapatra and K. Mehrotra, “Mixed coordinate tracking of generalized maneuvering targets using acceleration and jerk models,” IEEE Trans. Aerosp. Electron.  Syst., vol. 36, no. 3, pp. 992–1001, 2000.##
[24]  S. J. Julier and K. Uhlmann, “Unscented filtering and nonlinear estimation,” In Proc. IEEE Power Engineering Society Winter Meeting, vol. 92, no. 3,  pp. 401 –422, 2001.##
[25]  S . J. Julier and J. K. Uhlmann, “A new extension of the Kalman filter to nonlinear systems,” In Proc. of 11th Int. Symp. on Aerospace/Defence Sensing, Simulation and Controls, 1997.##
[26]  S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,” In Proc. IEEE, vol. 92, no. 3, pp.         401–422, 2004.##
[27]  R. V. D. Merwe, “Sigma-point Kalman filters for probabilistic inference in dynamic state-space models,” Electrical and computer engineering,” Ph.D. dissertation, Oregon Health Sciences Univ., Portland, OR, 2004.##
[28]  R. V. D. Merwe, J. F. G. de Freitas, A. Doucet, and E. A. Wan, “The unscented particle filter,” Technical report, Dept. of Engineering, University of Cambridge, 2000.##
[29]  E. A. Wan and R. V. D. Merwe, “The unscented Kalman filter for nonlinear estimation,” In Proc. Of IEEE Symposium (AS-SPCC), Oct. 2000.##
[30]  F. C. Schweppe, “Uncertain Dynamic Systems,” Prentice-Hall, 1973.##
[31]  A. Karsaz and H. Khaloozadeh, “An optimal two-stage algorithm for highly maneuvering targets tracking,” Signal Processing, vol. 89, pp. 532-547, 2009.##
[32]  H. Khaloozadeh and A. Karsaz, “High maneuvering target tracking,” J. Iranian Association of Electrical and Electronics Engineers (IAEEE), vol. 3, no. 1, pp. 22-34, 2006. (in Persian)##
[33]  E.Grossi, M. Lops, and L. Venturino, “A heuristic algorithm for track-before-detect with thresholded observations in radar systems. IEEE Signal Processing Letters, vol. 20, no. 8, pp. 811–814, 2013.##
[34]  E. Grossi, M. Lops, and L. Venturino, “A novel dynamic programming algorithm for track-before-detect in radar systems,” IEEE Transactions on Signal Processing, vol. 61, no. 10, pp. 2608–2619, 2013.##
[35]  B. K. Habtemariam, R. Tharmarasa, and T. Kirubarajan, “PHD filter based track-before-detect for MIMO radars,” Signal Processing, vol. 92, no. 3, pp. 667–678, 2012.##
[36]  Y. Wang and Y. Cao, “Coordinated Target Tracking via a Hybrid Optimization Approach,” Sensors, vol. 17, no. 3, p. 472, 2017.##
[37]  L. Zhu and X. Cheng, “High manoeuvre target tracking in coordinated turns,” IET Radar, Sonar & Navigation, vol. 9, no. 8, pp. 1078-1087, 2015.##
[38]  M. Mohammadi and H. Gholizade-Narm, “Adaptation of the noise covariance in extended Kalman filter applied on bearing only target tracking using indirect recursive method,” Irainan J. Cont., vol. 10, no. 2, pp. 14-31, 2016. (in Persian)##
[40]  C. Magnant, A. Giremus, E. Grivel, L. Ratton, and B. Joseph, “Bayesian non-parametric methods for dynamic state-noise covariance matrix estimation: Application to target tracking,” Signal Processing, vol. 127, pp. 135-150, 2016.##
[41]  M. Bahari, A. Karsaz, and M. Naghibi-S, “Intelligent Error Covariance Matrix Resetting for Maneuver Target Tracking,” Journal of Applied Sciences, vol. 8, no. 12, pp. 2279-2285, 2008.##
[42]  Z. Zhang, J. Zhang, Q. Zhou, and X. Li, “Multi-Target Angle Tracking Algorithm for Bistatic Multiple-Input Multiple-Output (MIMO) Radar Based on the Elements of the Covariance Matrix,” Sensors, vol. 18, no. 3, p. 805, 2018.##
[43]  R. Gholami and M. Okhovat, “Designing radar and IR sensors data fusion system for target tracking in noise jamming conditions,” J. Elect. Cyber Defence, vol. 3, pp. 1-10, 2017. (in Persian)##
[44]  Y. Guo, “The Tracking Algorithm of Reentry Ballistic Target,” Journal of Information and Computational Science, vol. 11, no. 12, pp. 4267-4276, 2014.##
[45]  B. Zheng, P. Fu, B. Li, and X. Yuan, “A Robust Adaptive Unscented Kalman Filter for Nonlinear Estimation with Uncertain Noise Covariance,” Sensors, vol. 18, no. 3, p. 808, 2018.##
[46]  I. Kudryavtseva and M. Lebedev, “Application of modified unscented kalman filter and unscented particle filter to solving tracking problems,” Civil Aviation High Technologies, vol. 21, no. 2, pp. 8-21, 2018.##
[47]  F. Deng, J. Chen, and C. Chen, “Adaptive unscented Kalman filter for parameter and state estimation of nonlinear high-speed objects,” Journal of Systems Engineering and Electronics, vol. 24, no. 4, pp. 655-665, 2013.##