ردیابی اهداف مانور بالا مبتنی بر روش حالت افزوده با استفاده از فیلتر کالمن خنثی تطبیقی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار موسسه آموزش عالی خراسان

2 دانشجوی کارشناسی ارشد، موسسه آموزش عالی خراسان

چکیده

بسیاری از روش­های ردیابی اهداف راداری مانور بالا مانند روش حالت افزوده بر اساس شبیه­سازی معادلات حرکت هدف و رادار در مختصات کارتزین صورت می­پذیرند. در محیط عملیاتی همراه با اختلال­های نویزی، ردیابی اهداف راداری به خصوص در مانورهای بالا که هدف در حال دور شدن از محل استقرار رادار است، خطای اندازه­گیری رادار روی محورهای کارتزین دائما رو به افزایش بوده در صورتی­که در بسیاری از مقالات، خطای مشاهدات با کواریانس ثابتی روی محورهای مختصات کارتزین لحاظ می­گردد. از طرفی بردار واقعی مشاهدات رادار شامل فاصله و زاویه سمت هدف در مختصات قطبی بوده و مدل­سازی این مشاهدات در این مختصات باعث غیرخطی شدن روابط می­شود و نیاز به روش­های تخمین غیرخطی مانند فیلتر کالمن خنثییا توسعه­یافته را ایجاد می­نماید. روش پیشنهادی در این مقاله با به­کارگیری ایده حالت افزوده در مختصات قطبی به رهگیری اهداف راداری مانور بالا بر اساسفیلتر کالمن خنثی می­پردازد روش پیشنهادی با به­کارگیری الگوریتم تطبیق ماتریس کواریانس تخمین در هر مرحله، معضل همگرایی دیرهنگام فیلتر را برطرف نموده و از واگرایی آن جلوگیری می­نماید. نتایج شبیه­سازی در سناریوهای مانور متوسط و بالا بر اساس روش پیشنهادی نسبت به دو روش فیلتر کالمن خنثیو توسعه­یافته، بهبود بیش از 90 درصدی را نشان می­دهد.

کلیدواژه‌ها


عنوان مقاله [English]

High Maneuvering Target Tracking Based on Augmented State Method using Adaptive Unscented Kalman Filter

نویسندگان [English]

  • A. Karsaz 1
  • S. V. Molaei Kaboodan 2
1 khorasan university
2 khorasan university
چکیده [English]

Many high maneuvering target tracking approaches, such as augmented state method, are based on target motion and radar modeling in the Cartesian coordinates., The projected radar observation errors along the Cartesian coordinates are continuously increasing in the target tracking problem in noisy       operation environments especially in the high maneuvering situations that the target is moving away from radar location. Whereas, in various simulations that are performed in many papers, these observation    errors are considered to have constant covariance values along the Cartesian coordinates. The real radar observation vector including target range and bearing is generally stated in Polar coordinates, and the nonlinearity of the radar observations in the Polar coordinates makes it necessary to implement the       nonlinear estimation approaches such as unscented Kalman filter (UKF) or extended Kalman filter (EKF). In this paper, high maneuvering target tracking is performed using the augmented state idea in the Polar coordinates based on UKF. The new proposed method also overcomes the late convergence of estimation and prevents filter divergence using the adaptive covariance matrix approach. The simulation results     obtained by the proposed method for both medium and high maneuvering scenarios show more than 90  percent improvement compared with the UKF and EKF algorithms.
 

کلیدواژه‌ها [English]

  • Unknown Input Estimation
  • High Maneuvering Target Tracking
  • Adaptive UKF
  • Augmented State Approac
[1]     Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, “Estimation with Applications to Tracking and Navigation: Theory, Algorithms, and Software,” Wiley: New York, NY, USA, 2001.##
[2]     T. C. Wang and P. K. Varshney, “A tracking algorithm for maneuvering targets,” IEEE Trans. Aerosp. Electron. Syst., vol. 29, no. 3, pp. 910–924, 1993.##
[3]     R. A. Singer, “Estimating optimal tracking filter performance for manned maneuvering targets,” IEEE T. Aerosp. Electron. Syst., vol. 6, pp. 473–483, 1970.##
[5]     H. Zhou and K. S. P. Kumar, “A “current” statistical model and adaptive algorithm for estimating maneuvering targets,” AIAA J. Guid., pp. 596–602, 1984.##
[6]     J. D. Kendrick, P. S. Maybeck, and J. G. Reid, “Estimation of aircraft target motion using orientation measurements,” IEEE Trans. Aerosp. Electron. Syst., vol. 17, pp. 254–260, 1981. ##
[7]     X. R. Li and V. P. Jilkov, “A survey of maneuvering target tracking-Part VIa: Density-based exact nonlinear filtering,” SPIE Defense Secur. Sens. Int. Soc. Opt. Photon., 2010.##
[8]     P. S. Maybeck, W. H. Worsley, and P. M. Flynn, “Investigation of constant turn-rate dynamics models in filters for airborne vehicle tracking. Proc. NAECON, pp. 896–903, 1982.##
[9]     Y. Bar-Shalom, “Multitarget-Multisensor Tracking: Advanced Applications,” Artech House: Norwood, MA, USA, 1990.##
[10]  G. Zhai, H. Meng, and X. Wang, “A Constant Speed Changing Rate and Constant Turn Rate Model for Maneuvering Target Tracking,” Sensors, vol. 14, no. 3, pp. 5239-5253, 2014.##
[11]  Y. Yang, J. Nan, S. Wang, Z. Zhuo, X. Fan, and J. Huang, “AFAKF for manoeuvring target tracking based on current statistical model,” IET Science, Measurement & Technology, vol. 10, no. 6, pp. 637-643, 2016.##
[12]  A. Karsaz and H. Khaloozadeh, “An optimal two-stage algorithm for highly maneuvering targets tracking,” Signal Processing, vol. 89, pp. 532-547, 2009.##
[13]  R. Tou and J. Zhang, “IMM approach to state estimation for systems with delayed measurements,” IET Signal Processing, vol. 10, no. 7, pp. 752-757, 2016.##
[14]  X. R. Li and V. P. Jilkov, “Survey of maneuvering target tracking,” Part I. Dynamic models, IEEE T. Aero. Elec. Sys., vol. 39, pp. 1333–1364, 2003. ##
[15]  M. Dahmani, A. Meche, M. Keche, and K. Abed-Meraim, “An improved fuzzy alpha-beta filter for tracking a highly maneuvering target,” Aerospace Science and Technology, vol. 58, pp. 298–305, 2016.##
[16]  A. Meche, M. Dahmani, M. Keche, and A. Ouamri, “Pseudo steady state filters for target tracking with polar measurements,” Aerospace Science & Technology, vol. 43, pp. 14–15, 2015.##
[18]  H. Khaloozadeh and A. Karsaz, “Modified input estimation technique for tracking manoeuvring targets,” IET Radar Sonar Navig., vol. 3, no. 1, pp. 30–41, 2009.##
[19]  R. E. Kalman, “A new approach to linear filtering and prediction problem,” Trans. of the ASME, Journal of Basic Engineering, 1960.##
[21]  J. Korn, S. W. Gully, and A. S.  Willsky, “Application of the generalized likelihood ratio algorithm to maneuver detection and estimation,” In Proc. American Control Conference, pp. 792-798, 1982.##
[22]  X. Lin, T. Kirubarajan, Y. Bar-Shalom, and S. Maskell, “Comparison of EKF, pseudomeasurement and particle filters for a bearing-only target tracking problem,” IEEE Trans. Aerosp. Electron.  Syst., 2002.##
[23]  P. R. Mahapatra and K. Mehrotra, “Mixed coordinate tracking of generalized maneuvering targets using acceleration and jerk models,” IEEE Trans. Aerosp. Electron.  Syst., vol. 36, no. 3, pp. 992–1001, 2000.##
[24]  S. J. Julier and K. Uhlmann, “Unscented filtering and nonlinear estimation,” In Proc. IEEE Power Engineering Society Winter Meeting, vol. 92, no. 3,  pp. 401 –422, 2001.##
[25]  S . J. Julier and J. K. Uhlmann, “A new extension of the Kalman filter to nonlinear systems,” In Proc. of 11th Int. Symp. on Aerospace/Defence Sensing, Simulation and Controls, 1997.##
[26]  S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,” In Proc. IEEE, vol. 92, no. 3, pp.         401–422, 2004.##
[27]  R. V. D. Merwe, “Sigma-point Kalman filters for probabilistic inference in dynamic state-space models,” Electrical and computer engineering,” Ph.D. dissertation, Oregon Health Sciences Univ., Portland, OR, 2004.##
[28]  R. V. D. Merwe, J. F. G. de Freitas, A. Doucet, and E. A. Wan, “The unscented particle filter,” Technical report, Dept. of Engineering, University of Cambridge, 2000.##
[29]  E. A. Wan and R. V. D. Merwe, “The unscented Kalman filter for nonlinear estimation,” In Proc. Of IEEE Symposium (AS-SPCC), Oct. 2000.##
[30]  F. C. Schweppe, “Uncertain Dynamic Systems,” Prentice-Hall, 1973.##
[31]  A. Karsaz and H. Khaloozadeh, “An optimal two-stage algorithm for highly maneuvering targets tracking,” Signal Processing, vol. 89, pp. 532-547, 2009.##
[32]  H. Khaloozadeh and A. Karsaz, “High maneuvering target tracking,” J. Iranian Association of Electrical and Electronics Engineers (IAEEE), vol. 3, no. 1, pp. 22-34, 2006. (in Persian)##
[33]  E.Grossi, M. Lops, and L. Venturino, “A heuristic algorithm for track-before-detect with thresholded observations in radar systems. IEEE Signal Processing Letters, vol. 20, no. 8, pp. 811–814, 2013.##
[34]  E. Grossi, M. Lops, and L. Venturino, “A novel dynamic programming algorithm for track-before-detect in radar systems,” IEEE Transactions on Signal Processing, vol. 61, no. 10, pp. 2608–2619, 2013.##
[35]  B. K. Habtemariam, R. Tharmarasa, and T. Kirubarajan, “PHD filter based track-before-detect for MIMO radars,” Signal Processing, vol. 92, no. 3, pp. 667–678, 2012.##
[36]  Y. Wang and Y. Cao, “Coordinated Target Tracking via a Hybrid Optimization Approach,” Sensors, vol. 17, no. 3, p. 472, 2017.##
[37]  L. Zhu and X. Cheng, “High manoeuvre target tracking in coordinated turns,” IET Radar, Sonar & Navigation, vol. 9, no. 8, pp. 1078-1087, 2015.##
[38]  M. Mohammadi and H. Gholizade-Narm, “Adaptation of the noise covariance in extended Kalman filter applied on bearing only target tracking using indirect recursive method,” Irainan J. Cont., vol. 10, no. 2, pp. 14-31, 2016. (in Persian)##
[40]  C. Magnant, A. Giremus, E. Grivel, L. Ratton, and B. Joseph, “Bayesian non-parametric methods for dynamic state-noise covariance matrix estimation: Application to target tracking,” Signal Processing, vol. 127, pp. 135-150, 2016.##
[41]  M. Bahari, A. Karsaz, and M. Naghibi-S, “Intelligent Error Covariance Matrix Resetting for Maneuver Target Tracking,” Journal of Applied Sciences, vol. 8, no. 12, pp. 2279-2285, 2008.##
[42]  Z. Zhang, J. Zhang, Q. Zhou, and X. Li, “Multi-Target Angle Tracking Algorithm for Bistatic Multiple-Input Multiple-Output (MIMO) Radar Based on the Elements of the Covariance Matrix,” Sensors, vol. 18, no. 3, p. 805, 2018.##
[43]  R. Gholami and M. Okhovat, “Designing radar and IR sensors data fusion system for target tracking in noise jamming conditions,” J. Elect. Cyber Defence, vol. 3, pp. 1-10, 2017. (in Persian)##
[44]  Y. Guo, “The Tracking Algorithm of Reentry Ballistic Target,” Journal of Information and Computational Science, vol. 11, no. 12, pp. 4267-4276, 2014.##
[45]  B. Zheng, P. Fu, B. Li, and X. Yuan, “A Robust Adaptive Unscented Kalman Filter for Nonlinear Estimation with Uncertain Noise Covariance,” Sensors, vol. 18, no. 3, p. 808, 2018.##
[46]  I. Kudryavtseva and M. Lebedev, “Application of modified unscented kalman filter and unscented particle filter to solving tracking problems,” Civil Aviation High Technologies, vol. 21, no. 2, pp. 8-21, 2018.##
[47]  F. Deng, J. Chen, and C. Chen, “Adaptive unscented Kalman filter for parameter and state estimation of nonlinear high-speed objects,” Journal of Systems Engineering and Electronics, vol. 24, no. 4, pp. 655-665, 2013.##