[1] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on automated dynamic malware-analysis techniques and tools,” ACM computing surveys (CSUR), vol. 44, p. 6, 2012. ##
[2]
A. Jadhav,
D. Vidyarthi, and M.
Hemavathy, “Evolution of evasive malwares: A survey,” in International Conference on Computational Techniques in Information and Communication Technologies (ICCTICT), 2016##
[3] S. Naval, V. Laxmi, M. S. Gaur, S. Raja, M. Rajarajan, and M. Conti, “Environment–Reactive Malware Behavior: Detection and Categorization,” in Data Privacy Management, Autonomous Spontaneous Security, and Security Assurance, ed: Springer, pp. 167-182, 2015##.
[4] P. Ferrie, “Attacks on Virtual Machine Emulators,” [Online] Available: https://www.symantec.com/avcenter/reference/Virtual_Machine_Threats.pdf, Symantec Advanced Threat Research, 2007##.
[5] N. Falliere, “Windows anti-debug reference,” [Online] Available: https://www.symantec.com/connect/articles/windows-anti-debug-reference, 2007##.
[6] K. Yoshizaki and T. Yamauchi, “Malware detection method focusing on anti-debugging functions,” in Computing and Networking (CANDAR), Second International Symposium on, pp. 563-566, 2014##.
[7] M.-K. Sun, M.-J. Lin, M. Chang, C.-S. Laih, and H.-T. Lin, “Malware virtualization-resistant behavior detection,” in Parallel and Distributed Systems (ICPADS), IEEE 17th International Conference on, pp. 912-917, 2011##.
[8] “NtTrace - Native API tracing for Windows,” [On.line] Available:www.howzatt.demon.co.uk/NtTrace, 2017.##
[9] “System Call Tracer for Windows,” [Online] Available: http://drmemory.org/docs/page_drstrace.html, 2017.##
[10] M. Sikorski and A. Honig, “Practical Malware Analysis,” no starch press, pp.159-160, 2012.##
[11] “An introduction to machine learning with scikit-learn,” [Online] Available: http://scikit-learn.org/stable/tutorial/basic/tutorial.html, 2017.##
[12] M. Lindorfer, C. Kolbitsch, and P. MilaniComparetti,” Detecting environment-sensitive malware,” in Recent Advances in Intrusion Detection, pp. 338-357, 2011##.
[13] C.-W. Hsu and S. W. Shieh, “Divergence detector: A fine-grained approach to detecting vm-awareness malware,” in Software Security and Reliability (SERE) IEEE 7th International Conference on, pp. 80-89, 2013.##
[14] Y. J. Liu, C. K. Chen, M. C. Y. Cho, and S. Shieh, “Fast Discovery of VM-Sensitive Divergence Points with Basic Block Comparison,” in Software Security and Reliability, Eighth International Conference, pp. 196-205, 2014.##
[15] S. Parsa, H. Saifi, M. H. Alaeian, “Providing a New Approach to Discovering Malware Behavioral Pattern Based on the Dependency Graph Between System Calls,” in Journal Of Electronical & Cyber Defence, vol. 4, no. 3, 2016. (In Persian)##
[16] L. Sun, T. Ebringer, and S. Boztas, “An automatic anti-anti-VMware technique applicable for multi-stage packed malware,” in Malicious and Unwanted Software. MALWARE, 3rd International Conference on, pp. 17-23, 2008.##
[17] J. Lee, B. Kang, and E. G. Im, “Evading anti-debugging techniques with binary substitution,” International Journal of Security & its Applications, vol. 8, no.1, pp.183-192, 2014.##
[18] “Dr. Memory,” [Online] Available: http://drmemory.org, 2017.##
[20] W. H. Gomaa and A. A. Fahmy, “A survey of text similarity approaches,” International Journal of Computer Applications, vol. 68, pp. 13-18, 2013.##
[21] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Introduction to algorithms,” MIT press, 3rd Edition, pp. 390-396, 2009.##
[23] F. Pedregosa, et al., “Scikit-learn: Machine Learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.##
[24] “sklearn.model_selection.GridSearchCV,” [Online] Avai-lable: http://scikit-learn.org/stable/modules/generated/skl-earn.model_selection.train_test_split.html, 2017.##
[25] C.-W. Hsu, C.-C. Chang, and C.-J. Lin, “A practical guide to support vector classification,” [Online] Available:https://www.csie.ntu.edu.tw/~cjlin, 2016.##
[26] “
sklearn.preprocessing.StandardScaler,” [Online] Availa-ble: http://scikit-learn.org/stable/modules/generated/skl-earn.preprocessing.StandardScaler.html, 2017.##
[27] “sklearn.model_selection.GridSearchCV,” [Online] Avai-lable: http://scikit-learn.org/stable/modules/generated/skl-earn.model_selection.GridSearchCV.html, 2017.##
[28] “Tuning the hyper-parameters of an estimator,” [Online] Available: http://scikit-learn.org/stable/modules/grid_sea-rch.html, 2017.##
[29] “sklearn.model_selection.GridSearchCV,” [Online] Avai-lable: http://scikit-learn.org/stable/modules/generated/skl-earn.metrics.precision_score.html, 2017.##
[30] “sklearn.model_selection.GridSearchCV,” [Online] Avai-lable: http://scikit-learn.org/stable/modules/generated/skl-earn.metrics.recall_score.html, 2017.##
[31] “sklearn.model_selection.GridSearchCV,” [Online] Avai-lable: http://scikit-learn.org/stable/modules/generated/skl-earn. .metrics.accuracy_score.html, 2017.##
[32] “winapioverride32,” [Online] Available: http://jacquelin.potier.free.fr/winapioverride32/, 2017.##
[33] M. Russinovich, “Process Monitor v3.40,” [Online] Available: https://docs.microsoft.com/en-us/sysinternals/downloads/procmon, 2017.##